MULTIMODAL IMAGING IN VORTEX VEIN VARICES

Citation:

Veronese C, Staurenghi G, Pellegrini M, Maiolo C, Primavera L, Morara M, Armstrong GW, Ciardella AP. MULTIMODAL IMAGING IN VORTEX VEIN VARICES. Retin Cases Brief Rep 2019;13(3):260-265.

Date Published:

2019 Summer

Abstract:

PURPOSE: The aim of this study is to describe the clinical presentation of vortex vein varices with multimodal imaging. METHODS: The authors carried out a retrospective case series of eight patients (7 female, 1 male) with an average age of 60.2 years (min 8, max 84, median 68.5) presenting with vortex vein varices. All patients were evaluated at the Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy and at Luigi Sacco Hospital, University of Milan, Milan, Italy. Patients underwent complete ophthalmologic examinations, including best corrected visual acuity, intraocular pressure, anterior segment, and fundus examination. Imaging studies, including fundus color photography, near-infrared reflectance imaging, fundus autofluorescence, fluorescein angiography, indocyanine green angiography, and spectral-domain enhanced depth imaging optical coherence tomography were also performed. Ultra-widefield fluorescein angiography and ultra-widefield indocyanine angiography using the Heidelberg Retina Angiograph and the Staurenghi 230 SLO Retina Lens were used to demonstrate the disappearance of all retinal lesions when pressure was applied to the globe. RESULTS: All eight cases initially presented to the emergency room. One patient presented secondary to trauma, two patients presented for suspected hemangioma, whereas the other five were referred to the authors' hospitals for suspected retinal lesions. On examination, retinal abnormalities were identified in all 8 patients, with 7 (87.5%) oculus dexter and 1 (12.5%) oculus sinister, and with 1 (12.5%) inferotemporally, 3 (37.5%) superonasally, 3 (37.5%) inferonasally, and 1 (12.5%) inferiorly. Fundus color photography showed an elevated lesion in seven patients and a nonelevated red lesion in one patient. In all patients, near-infrared reflectance imaging showed a hyporeflective lesion in the periphery of the retina. Fundus autofluorescence identified round hypofluorescent rings surrounding weakly hyperfluorescent lesions in all patients. On fluorescein angiography, all lesions were initially hyperfluorescent with a hypofluorescent ring, with the lesion becoming hyperfluorescent after injection of dye. Indocyanine green angiography demonstrated dilation of the vortex vein ampullae in all patients. Spectral-domain enhanced depth imaging optical coherence tomography demonstrated dilated choroidal vessels and a hyporeflective cavity without subretinal fluid in all patients. Ultra-widefield fluorescein angiography and ultra-widefield indocyanine angiography demonstrated disappearance of all retinal lesions when pressure was applied to the globe. Findings are consistent with the diagnosis of vortex vein varix in all eight patients, with six patients (75%) exhibiting a single varix and two patients (25%) exhibiting a double varix. CONCLUSION: The diagnosis of vortex vein varices can be confirmed through clinical examination through the use of digital pressure to the globe during ophthalmoscopic examination. Adjunctive multimodal imaging (fundus color photography, near-infrared reflectance imaging, fundus autofluorescence, fluorescein angiography, indocyanine angiography, and spectral-domain enhanced depth imaging optical coherence tomography) was useful in the diagnosis of vortex vein varices in the authors' clinical cases. However, in more challenging clinical cases, the authors' novel use of the ultra-widefield contact lens for application of ocular pressure with a resulting resolution of the varix proved to be a useful and easy diagnostic imaging method for confirming the presence of vortex vein varices.

See also: Retina, July 2019, All, 2019
Last updated on 07/31/2019