Genomics

Tenney AP, Di Gioia SA, Webb BD, Chan W-M, de Boer E, Garnai SJ, Barry BJ, Ray T, Kosicki M, Robson CD, Zhang Z, Collins TE, Gelber A, Pratt BM, Fujiwara Y, Varshney A, Lek M, Warburton PE, Van Ryzin C, Lehky TJ, Zalewski C, King KA, Brewer CC, Thurm A, Snow J, Facio FM, Narisu N, Bonnycastle LL, Swift A, Chines PS, Bell JL, Mohan S, Whitman MC, Staffieri SE, Elder JE, Demer JL, Torres A, Rachid E, Al-Haddad C, Boustany R-M, Mackey DA, Brady AF, Fenollar-Cortés M, Fradin M, Kleefstra T, Padberg GW, Raskin S, Sato MT, Orkin SH, Parker SCJ, Hadlock TA, Vissers LELM, van Bokhoven H, Jabs EW, Collins FS, Pennacchio LA, Manoli I, Engle EC. Noncoding variants alter GATA2 expression in rhombomere 4 motor neurons and cause dominant hereditary congenital facial paresis. Nat Genet 2023;55(7):1149-1163.Abstract
Hereditary congenital facial paresis type 1 (HCFP1) is an autosomal dominant disorder of absent or limited facial movement that maps to chromosome 3q21-q22 and is hypothesized to result from facial branchial motor neuron (FBMN) maldevelopment. In the present study, we report that HCFP1 results from heterozygous duplications within a neuron-specific GATA2 regulatory region that includes two enhancers and one silencer, and from noncoding single-nucleotide variants (SNVs) within the silencer. Some SNVs impair binding of NR2F1 to the silencer in vitro and in vivo and attenuate in vivo enhancer reporter expression in FBMNs. Gata2 and its effector Gata3 are essential for inner-ear efferent neuron (IEE) but not FBMN development. A humanized HCFP1 mouse model extends Gata2 expression, favors the formation of IEEs over FBMNs and is rescued by conditional loss of Gata3. These findings highlight the importance of temporal gene regulation in development and of noncoding variation in rare mendelian disease.
Han X, Gharahkhani P, Hamel AR, Ong JS, Rentería ME, Mehta P, Dong X, Pasutto F, Hammond C, Young TL, Hysi P, Lotery AJ, Jorgenson E, Choquet H, Hauser M, Cooke Bailey JN, Nakazawa T, Akiyama M, Shiga Y, Fuller ZL, Wang X, Hewitt AW, Craig JE, Pasquale LR, Mackey DA, Wiggs JL, Khawaja AP, Segrè AV, Segrè AV, Segrè AV, Macgregor S. Large-scale multitrait genome-wide association analyses identify hundreds of glaucoma risk loci. Nat Genet 2023;Abstract
Glaucoma, a leading cause of irreversible blindness, is a highly heritable human disease. Previous genome-wide association studies have identified over 100 loci for the most common form, primary open-angle glaucoma. Two key glaucoma-associated traits also show high heritability: intraocular pressure and optic nerve head excavation damage quantified as the vertical cup-to-disc ratio. Here, since much of glaucoma heritability remains unexplained, we conducted a large-scale multitrait genome-wide association study in participants of European ancestry combining primary open-angle glaucoma and its two associated traits (total sample size over 600,000) to substantially improve genetic discovery power (263 loci). We further increased our power by then employing a multiancestry approach, which increased the number of independent risk loci to 312, with the vast majority replicating in a large independent cohort from 23andMe, Inc. (total sample size over 2.8 million; 296 loci replicated at P < 0.05, 240 after Bonferroni correction). Leveraging multiomics datasets, we identified many potential druggable genes, including neuro-protection targets likely to act via the optic nerve, a key advance for glaucoma because all existing drugs only target intraocular pressure. We further used Mendelian randomization and genetic correlation-based approaches to identify novel links to other complex traits, including immune-related diseases such as multiple sclerosis and systemic lupus erythematosus.
Han X, Lains I, Li J, Li J, Chen Y, Yu B, Qi Q, Boerwinkle E, Kaplan R, Thyagarajan B, Daviglus M, Joslin CE, Cai J, Guasch-Ferré M, Tobias DK, Rimm E, Ascherio A, Costenbader K, Karlson E, Mucci L, Eliassen HA, Zeleznik O, Miller J, Vavvas DG, Kim IK, Silva R, Miller J, Hu F, Willett W, Lasky-Su J, Kraft P, Richards BJ, Macgregor S, Husain D, Liang L. Integrating genetics and metabolomics from multi-ethnic and multi-fluid data reveals putative mechanisms for age-related macular degeneration. Cell Rep Med 2023;4(7):101085.Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness in older adults. Investigating shared genetic components between metabolites and AMD can enhance our understanding of its pathogenesis. We conduct metabolite genome-wide association studies (mGWASs) using multi-ethnic genetic and metabolomic data from up to 28,000 participants. With bidirectional Mendelian randomization analysis involving 16,144 advanced AMD cases and 17,832 controls, we identify 108 putatively causal relationships between plasma metabolites and advanced AMD. These metabolites are enriched in glycerophospholipid metabolism, lysophospholipid, triradylcglycerol, and long chain polyunsaturated fatty acid pathways. Bayesian genetic colocalization analysis and a customized metabolome-wide association approach prioritize putative causal AMD-associated metabolites. We find limited evidence linking urine metabolites to AMD risk. Our study emphasizes the contribution of plasma metabolites, particularly lipid-related pathways and genes, to AMD risk and uncovers numerous putative causal associations between metabolites and AMD risk.
Gold NB, Adelson SM, Shah N, Williams S, Bick SL, Zoltick ES, Gold JI, Strong A, Ganetzky R, Roberts AE, Walker M, Holtz AM, Sankaran VG, Delmonte O, Tan W, Holm IA, Thiagarajah JR, Kamihara J, Comander J, Place E, Wiggs J, Green RC. Perspectives of Rare Disease Experts on Newborn Genome Sequencing. JAMA Netw Open 2023;6(5):e2312231.Abstract
IMPORTANCE: Newborn genome sequencing (NBSeq) can detect infants at risk for treatable disorders currently undetected by conventional newborn screening. Despite broad stakeholder support for NBSeq, the perspectives of rare disease experts regarding which diseases should be screened have not been ascertained. OBJECTIVE: To query rare disease experts about their perspectives on NBSeq and which gene-disease pairs they consider appropriate to evaluate in apparently healthy newborns. DESIGN, SETTING, AND PARTICIPANTS: This survey study, designed between November 2, 2021, and February 11, 2022, assessed experts' perspectives on 6 statements related to NBSeq. Experts were also asked to indicate whether they would recommend including each of 649 gene-disease pairs associated with potentially treatable conditions in NBSeq. The survey was administered between February 11 and September 23, 2022, to 386 experts, including all 144 directors of accredited medical and laboratory genetics training programs in the US. EXPOSURES: Expert perspectives on newborn screening using genome sequencing. MAIN OUTCOMES AND MEASURES: The proportion of experts indicating agreement or disagreement with each survey statement and those who selected inclusion of each gene-disease pair were tabulated. Exploratory analyses of responses by gender and age were conducted using t and χ2 tests. RESULTS: Of 386 experts invited, 238 (61.7%) responded (mean [SD] age, 52.6 [12.8] years [range 27-93 years]; 126 [52.9%] women and 112 [47.1%] men). Among the experts who responded, 161 (87.9%) agreed that NBSeq for monogenic treatable disorders should be made available to all newborns; 107 (58.5%) agreed that NBSeq should include genes associated with treatable disorders, even if those conditions were low penetrance; 68 (37.2%) agreed that actionable adult-onset conditions should be sequenced in newborns to facilitate cascade testing in parents, and 51 (27.9%) agreed that NBSeq should include screening for conditions with no established therapies or management guidelines. The following 25 genes were recommended by 85% or more of the experts: OTC, G6PC, SLC37A4, CYP11B1, ARSB, F8, F9, SLC2A1, CYP17A1, RB1, IDS, GUSB, DMD, GLUD1, CYP11A1, GALNS, CPS1, PLPBP, ALDH7A1, SLC26A3, SLC25A15, SMPD1, GATM, SLC7A7, and NAGS. Including these, 42 gene-disease pairs were endorsed by at least 80% of experts, and 432 genes were endorsed by at least 50% of experts. CONCLUSIONS AND RELEVANCE: In this survey study, rare disease experts broadly supported NBSeq for treatable conditions and demonstrated substantial concordance regarding the inclusion of a specific subset of genes in NBSeq.
Diaz-Torres S, He W, Thorp J, Seddighi S, Mullany S, Mullany S, Hammond CJ, Hysi PG, Pasquale LR, Khawaja AP, Hewitt AW, Craig JE, Mackey DA, Wiggs JL, van Duijn C, Lupton MK, Ong J-S, Macgregor S, Gharahkhani P. Disentangling the genetic overlap and causal relationships between primary open-angle glaucoma, brain morphology and four major neurodegenerative disorders. EBioMedicine 2023;92:104615.Abstract
BACKGROUND: Primary open-angle glaucoma (POAG) is an optic neuropathy characterized by progressive degeneration of the optic nerve that leads to irreversible visual impairment. Multiple epidemiological studies suggest an association between POAG and major neurodegenerative disorders (Alzheimer's disease, amyotrophic lateral sclerosis, frontotemporal dementia, and Parkinson's disease). However, the nature of the overlap between neurodegenerative disorders, brain morphology and glaucoma remains inconclusive. METHOD: In this study, we performed a comprehensive assessment of the genetic and causal relationship between POAG and neurodegenerative disorders, leveraging genome-wide association data from studies of magnetic resonance imaging of the brain, POAG, and four major neurodegenerative disorders. FINDINGS: This study found a genetic overlap and causal relationship between POAG and its related phenotypes (i.e., intraocular pressure and optic nerve morphology traits) and brain morphology in 19 regions. We also identified 11 loci with a significant local genetic correlation and a high probability of sharing the same causal variant between neurodegenerative disorders and POAG or its related phenotypes. Of interest, a region on chromosome 17 corresponding to MAPT, a well-known risk locus for Alzheimer's and Parkinson's disease, was shared between POAG, optic nerve degeneration traits, and Alzheimer's and Parkinson's diseases. Despite these local genetic overlaps, we did not identify strong evidence of a causal association between these neurodegenerative disorders and glaucoma. INTERPRETATION: Our findings indicate a distinctive and likely independent neurodegenerative process for POAG involving several brain regions although several POAG or optic nerve degeneration risk loci are shared with neurodegenerative disorders, consistent with a pleiotropic effect rather than a causal relationship between these traits. FUNDING: PG was supported by an NHMRC Investigator Grant (#1173390), SM by an NHMRC Senior Research Fellowship and an NHMRC Program Grant (APP1150144), DM by an NHMRC Fellowship, LP is funded by the NEIEY015473 and EY032559 grants, SS is supported by an NIH-Oxford Cambridge Fellowship and NIH T32 grant (GM136577), APK is supported by a UK Research and Innovation Future Leaders Fellowship, an Alcon Research Institute Young Investigator Award and a Lister Institute for Preventive Medicine Award.
Aboobakar IF, Collantes ERA, Hauser MA, Stamer DW, Wiggs JL. Rare protective variants and glaucoma-relevant cell stressors modulate Angiopoietin-like 7 expression. Hum Mol Genet 2023;32(15):2523-2531.Abstract
Rare missense and nonsense variants in the Angiopoietin-like 7 (ANGPTL7) gene confer protection from primary open-angle glaucoma (POAG), though the functional mechanism remains uncharacterized. Interestingly, a larger variant effect size strongly correlates with in silico predictions of increased protein instability (r = -0.98), suggesting that protective variants lower ANGPTL7 protein levels. Here, we show that missense and nonsense variants cause aggregation of mutant ANGPTL7 protein in the endoplasmic reticulum (ER) and decreased levels of secreted protein in human trabecular meshwork (TM) cells; a lower secreted:intracellular protein ratio strongly correlates with variant effects on intraocular pressure (r = 0.81). Importantly, accumulation of mutant protein in the ER does not increase expression of ER stress proteins in TM cells (P > 0.05 for all variants tested). Cyclic mechanical stress, a glaucoma-relevant physiologic stressor, also significantly lowers ANGPTL7 expression in primary cultures of human Schlemm's canal (SC) cells (-2.4-fold-change, P = 0.01). Collectively, these data suggest that the protective effects of ANGPTL7 variants in POAG stem from lower levels of secreted protein, which may modulate responses to physiologic and pathologic ocular cell stressors. Downregulation of ANGPTL7 expression may therefore serve as a viable preventative and therapeutic strategy for this common, blinding disease.
Wong WJ, Emdin C, Bick AG, Zekavat SM, Niroula A, Pirruccello JP, Dichtel L, Griffin G, Uddin MM, Gibson CJ, Kovalcik V, Lin AE, McConkey ME, Vromman A, Sellar RS, Kim PG, Agrawal M, Weinstock J, Long MT, Yu B, Banerjee R, Nicholls RC, Dennis A, Kelly M, Loh P-R, McCarroll S, Boerwinkle E, Vasan RS, Jaiswal S, Johnson AD, Chung RT, Corey K, Levy D, Ballantyne C, Ballantyne C, Ebert BL, Natarajan P. Clonal haematopoiesis and risk of chronic liver disease. Nature 2023;616(7958):747-754.Abstract
Chronic liver disease is a major public health burden worldwide1. Although different aetiologies and mechanisms of liver injury exist, progression of chronic liver disease follows a common pathway of liver inflammation, injury and fibrosis2. Here we examined the association between clonal haematopoiesis of indeterminate potential (CHIP) and chronic liver disease in 214,563 individuals from 4 independent cohorts with whole-exome sequencing data (Framingham Heart Study, Atherosclerosis Risk in Communities Study, UK Biobank and Mass General Brigham Biobank). CHIP was associated with an increased risk of prevalent and incident chronic liver disease (odds ratio = 2.01, 95% confidence interval (95% CI) [1.46, 2.79]; P < 0.001). Individuals with CHIP were more likely to demonstrate liver inflammation and fibrosis detectable by magnetic resonance imaging compared to those without CHIP (odds ratio = 1.74, 95% CI [1.16, 2.60]; P = 0.007). To assess potential causality, Mendelian randomization analyses showed that genetic predisposition to CHIP was associated with a greater risk of chronic liver disease (odds ratio = 2.37, 95% CI [1.57, 3.6]; P < 0.001). In a dietary model of non-alcoholic steatohepatitis, mice transplanted with Tet2-deficient haematopoietic cells demonstrated more severe liver inflammation and fibrosis. These effects were mediated by the NLRP3 inflammasome and increased levels of expression of downstream inflammatory cytokines in Tet2-deficient macrophages. In summary, clonal haematopoiesis is associated with an elevated risk of liver inflammation and chronic liver disease progression through an aberrant inflammatory response.
Yavuz Saricay L, Hoyek S, Ashit Parikh A, Baldwin G, Bodamer OA, Gonzalez E, Patel NA. A case of Aicardi syndrome associated with duplication event of Xp22 including SHOX. Ophthalmic Genet 2023;44(6):591-594.Abstract
BACKGROUND: Aicardi syndrome is a neurodevelopmental disorder characterized by a triad of partial or complete agenesis of the corpus callosum, infantile spasms, and pathognomonic chorioretinal lacunae. METHODS: Examination, multimodal imaging, and genetic testing were used to guide diagnosis. RESULTS: We report a case of a pediatric patient who was initially diagnosed with refractory infantile spasms. The patient was unresponsive to conventional antiepileptic therapy, and genetic testing with whole exome and mitochondrial genome sequencing could not identify the underlying cause, so vigabatrin was initiated. The ophthalmic examination under anesthesia for vigabatrin toxicity screening revealed chorioretinal atrophy in the retinal periphery of both eyes, with two 3-disc diameter chorioretinal lacunae superotemporal and inferonasal to the optic nerve in the left eye. Given the neuroimaging findings of corpus callosum hypoplasia with polymicrogyria and ocular findings, the patient was diagnosed with Aicardi syndrome. Genetic testing revealed a novel duplication event at the Xp22 locus. CONCLUSIONS: Aicardi syndrome, albeit a rare condition, should always be considered in the differential diagnosis when investigating a female child with refractory seizures in early childhood. Genetic testing may help further our understanding of AIS and the search for a genetic etiology.
Falcone MM, Chang Y-H, Lidov H, Stagner AM, Dagi LR. Two siblings with GAPO syndrome: Ophthalmic presentation and histopathologic findings. Ophthalmic Genet 2023;44(6):598-601.Abstract
BACKGROUND: GAPO syndrome (growth retardation, alopecia, pseudoanodontia, optic atrophy) is a rare, autosomal recessive connective tissue disorder with only 60 reported cases. Ophthalmic manifestations vary and include hypertelorism, optic atrophy, and glaucoma. There have been three reported cases of GAPO syndrome with craniosynostosis. MATERIALS/METHODS: We describe two new siblings with GAPO syndrome and craniosynostosis and the first histopathologic analysis of Tenon's capsule and extraocular muscle in this syndrome. RESULTS: Both siblings presented with papilledema and V-pattern strabismus in addition to the alopecia, brittle eyelashes, growth retardation, and pseudoanodontia that characterize GAPO syndrome. Cranial vault expansion, though successful, was complicated by lack of distinct periosteal layers, thin dural adherence to bone, and extensive venous bleeding. Tenons encountered during strabismus surgery was inelastic and highly vascular. Histopathological analysis revealed hyalinization of Tenon's and a thickened, homogenized, amorphous appearance, similar to the extracellular matrix abnormalities described in skin and other organs Histopathological analysis of extraocular muscle was, in contrast, unremarkable. CONCLUSIONS: GAPO impacts the extracellular matrix of Tenon's resulting in inelasticity and hypervascularity. Ophthalmologists should be mindful of these aberrant characteristics when planning surgery in this population.
Reichart D, Newby GA, Wakimoto H, Lun M, Gorham JM, Curran JJ, Raguram A, DeLaughter DM, Conner DA, Marsiglia JDC, Kohli S, Chmatal L, Page DC, Zabaleta N, Vandenberghe L, Liu DR, Seidman JG, Seidman C. Efficient in vivo genome editing prevents hypertrophic cardiomyopathy in mice. Nat Med 2023;29(2):412-421.Abstract
Dominant missense pathogenic variants in cardiac myosin heavy chain cause hypertrophic cardiomyopathy (HCM), a currently incurable disorder that increases risk for stroke, heart failure and sudden cardiac death. In this study, we assessed two different genetic therapies-an adenine base editor (ABE8e) and a potent Cas9 nuclease delivered by AAV9-to prevent disease in mice carrying the heterozygous HCM pathogenic variant myosin R403Q. One dose of dual-AAV9 vectors, each carrying one half of RNA-guided ABE8e, corrected the pathogenic variant in ≥70% of ventricular cardiomyocytes and maintained durable, normal cardiac structure and function. An additional dose provided more editing in the atria but also increased bystander editing. AAV9 delivery of RNA-guided Cas9 nuclease effectively inactivated the pathogenic allele, albeit with dose-dependent toxicities, necessitating a narrow therapeutic window to maintain health. These preclinical studies demonstrate considerable potential for single-dose genetic therapies to correct or silence pathogenic variants and prevent the development of HCM.
Varela APM, Sant'Anna FH, Dos Santos AV, Prichula J, Comerlato J, Dos Santos GT, Wendland E. Genomic evidence of SARS-CoV-2 reinfection cases in southern Brazil. Arch Virol 2023;168(1):19.Abstract
Cases of reinfection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported worldwide. We investigated reinfection cases in a set of more than 30,000 samples, and the SARS-CoV-2 genomes from selected samples from four patients with at least two positive diagnoses with an interval ≥ 45 days between tests were sequenced and analyzed. Comparative genomic and phylogenetic analysis confirmed three reinfection cases and suggested that the fourth one was caused by a virus of the same lineage. Viral sequencing is crucial for understanding the natural course of reinfections and for planning public health strategies for management of COVID-19.
Pons S, Frapy E, Sereme Y, Gaultier C, Lebreton F, Kropec A, Danilchanka O, Schlemmer L, Schrimpf C, Allain M, Angoulvant F, Lecuyer H, Bonacorsi S, Aschard H, Sokol H, Cywes-Bentley C, Mekalanos JJ, Guillard T, Pier GB, Roux D, Skurnik D. A high-throughput sequencing approach identifies immunotherapeutic targets for bacterial meningitis in neonates. EBioMedicine 2023;88:104439.Abstract
BACKGROUND: Worldwide, Escherichia coli is the leading cause of neonatal Gram-negative bacterial meningitis, but full understanding of the pathogenesis of this disease is not yet achieved. Moreover, to date, no vaccine is available against bacterial neonatal meningitis. METHODS: Here, we used Transposon Sequencing of saturated banks of mutants (TnSeq) to evaluate E. coli K1 genetic fitness in murine neonatal meningitis. We identified E. coli K1 genes encoding for factors important for systemic dissemination and brain infection, and focused on products with a likely outer-membrane or extra-cellular localization, as these are potential vaccine candidates. We used in vitro and in vivo models to study the efficacy of active and passive immunization. RESULTS: We selected for further study the conserved surface polysaccharide Poly-β-(1-6)-N-Acetyl Glucosamine (PNAG), as a strong candidate for vaccine development. We found that PNAG was a virulence factor in our animal model. We showed that both passive and active immunization successfully prevented and/or treated meningitis caused by E. coli K1 in neonatal mice. We found an excellent opsonophagocytic killing activity of the antibodies to PNAG and in vitro these antibodies were also able to decrease binding, invasion and crossing of E. coli K1 through two blood brain barrier cell lines. Finally, to reinforce the potential of PNAG as a vaccine candidate in bacterial neonatal meningitis, we demonstrated that Group B Streptococcus, the main cause of neonatal meningitis in developed countries, also produced PNAG and that antibodies to PNAG could protect in vitro and in vivo against this major neonatal pathogen. INTERPRETATION: Altogether, these results indicate the utility of a high-throughput DNA sequencing method to identify potential immunotherapy targets for a pathogen, including in this study a potential broad-spectrum target for prevention of neonatal bacterial infections. FUNDINGS: ANR Seq-N-Vaq, Charles Hood Foundation, Hearst Foundation, and Groupe Pasteur Mutualité.
Liu C-H, Yemanyi F, Bora K, Kushwah N, Blomfield AK, Kamenecka TM, SanGiovanni JP, Sun Y, Solt LA, Chen J. Genetic deficiency and pharmacological modulation of RORα regulate laser-induced choroidal neovascularization. Aging (Albany NY) 2023;15(1):37-52.Abstract
Choroidal neovascularization (CNV) causes acute vision loss in neovascular age-related macular degeneration (AMD). Genetic variations of the nuclear receptor RAR-related orphan receptor alpha (RORα) have been linked with neovascular AMD, yet its specific role in pathological CNV development is not entirely clear. In this study, we showed that Rora was highly expressed in the mouse choroid compared with the retina, and genetic loss of RORα in Staggerer mice (Rorasg/sg) led to increased expression levels of Vegfr2 and Tnfa in the choroid and retinal pigment epithelium (RPE) complex. In a mouse model of laser-induced CNV, RORα expression was highly increased in the choroidal/RPE complex post-laser, and loss of RORα in Rorasg/sg eyes significantly worsened CNV with increased lesion size and vascular leakage, associated with increased levels of VEGFR2 and TNFα proteins. Pharmacological inhibition of RORα also worsened CNV. In addition, both genetic deficiency and inhibition of RORα substantially increased vascular growth in isolated mouse choroidal explants ex vivo. RORα inhibition also promoted angiogenic function of human choroidal endothelial cell culture. Together, our results suggest that RORα negatively regulates pathological CNV development in part by modulating angiogenic response of the choroidal endothelium and inflammatory environment in the choroid/RPE complex.
Wu W, Ma G, Qi H, Dong L, Chen F, Wang Y, Mao X, Guo X, Cui J, Matsubara JA, Vanhaesebroeck B, Yan X, Zhao G, Zhang S, Lei H. Genome Editing of Pik3cd Impedes Abnormal Retinal Angiogenesis. Hum Gene Ther 2023;34(1-2):30-41.Abstract
Abnormal angiogenesis is associated with myriad human diseases, including proliferative diabetic retinopathy (PDR). Signaling transduction through phosphoinositide 3-kinases (PI3Ks) plays a critical role in angiogenesis. Herein, we showed that p110δ, the catalytic subunit of PI3Kδ, was highly expressed in pathological retinal vascular endothelial cells (ECs) in a mouse model of oxygen-induced retinopathy (OIR) and in fibrovascular membranes from patients with PDR. To explore novel intervention with PI3Kδ expression, we developed a recombinant dual adeno-associated viral (rAAV) system for delivering CRISPR/Cas9 in which Streptococcus pyogenes (Sp) Cas9 expression was driven by an endothelial specific promoter of the intercellular adhesion molecule 2 (pICAM2) to edit genomic Pik3cd, the gene encoding p110δ. We then demonstrated that infection of cultured mouse vascular ECs with the dual rAAV1s of rAAV1-pICAM2-SpCas9 and rAAV1-SpGuide targeting genomic Pik3cd resulted in 80% DNA insertion/deletion in the locus of genomic Pik3cd and 70% depletion of p110δ expression. Furthermore, we showed that in the mouse model of OIR editing retinal Pik3cd with the dual rAAV1s resulted in not only a significant decrease in p110δ expression, and Akt activation, but also a dramatic reduction in pathological retinal angiogenesis. These findings reveal that Pik3cd editing is a novel approach to treating abnormal retinal angiogenesis.
Nakamichi K, Akileswaran L, Meirick T, Lee MD, Chodosh J, Rajaiya J, Stroman D, Wolf-Yadlin A, Jackson Q, Holtz BW, Lee AY, Lee CS, Van Gelder RN, Van Gelder RN. Machine Learning Prediction of Adenovirus D8 Conjunctivitis Complications from Viral Whole-Genome Sequence. Ophthalmol Sci 2022;2(4):100166.Abstract
OBJECTIVE: To obtain complete DNA sequences of adenoviral (AdV) D8 genome from patients with conjunctivitis and determine the relation of sequence variation to clinical outcomes. DESIGN: This study is a post hoc analysis of banked conjunctival swab samples from the BAYnovation Study, a previously conducted, randomized controlled clinical trial for AdV conjunctivitis. PARTICIPANTS: Ninety-six patients with AdV D8-positive conjunctivitis who received placebo treatment in the BAYnovation Study were included in the study. METHODS: DNA from conjunctival swabs was purified and subjected to whole-genome viral DNA sequencing. Adenovirus D8 variants were identified and correlated with clinical outcomes, including 2 machine learning methods. MAIN OUTCOME MEASURES: Viral DNA sequence and development of subepithelial infiltrates (SEIs) were the main outcome measures. RESULTS: From initial sequencing of 80 AdV D8-positive samples, full adenoviral genome reconstructions were obtained for 71. A total of 630 single-nucleotide variants were identified, including 156 missense mutations. Sequence clustering revealed 3 previously unappreciated viral clades within the AdV D8 type. The likelihood of SEI development differed significantly between clades, ranging from 83% for Clade 1 to 46% for Clade 3. Genome-wide analysis of viral single-nucleotide polymorphisms failed to identify single-gene determinants of outcome. Two machine learning models were independently trained to predict clinical outcome using polymorphic sequences. Both machine learning models correctly predicted development of SEI outcomes in a newly sequenced validation set of 16 cases (P = 1.5 × 10-5). Prediction was dependent on ensemble groups of polymorphisms across multiple genes. CONCLUSIONS: Adenovirus D8 has ≥ 3 prevalent molecular substrains, which differ in propensity to result in SEIs. Development of SEIs can be accurately predicted from knowledge of full viral sequence. These results suggest that development of SEIs in AdV D8 conjunctivitis is largely attributable to pathologic viral sequence variants within the D8 type and establishes machine learning paradigms as a powerful technique for understanding viral pathogenicity.

Pages