Mobility Enhancement & Vision Rehabilitation

Mobility Enhancement & Vision Rehabilitation Publications

Occelli V, Lacey S, Stephens C, Merabet LB, Sathian K. Enhanced verbal abilities in the congenitally blind. Exp Brain Res 2017;Abstract

Numerous studies have found that congenitally blind individuals have better verbal memory than their normally sighted counterparts. However, it is not known whether this reflects superiority of verbal or memory abilities. In order to distinguish between these possibilities, we tested congenitally blind participants and normally sighted control participants, matched for age and education, on a range of verbal and spatial tasks. Congenitally blind participants were significantly better than sighted controls on all the verbal tasks but the groups did not differ significantly on the spatial tasks. Thus, the congenitally blind appear to have superior verbal, but not spatial, abilities. This may reflect greater reliance on verbal information and the involvement of visual cortex in language processing in the congenitally blind.

Houston KE, Paschalis EI, Angueira DC, Bronstad MP, Barrett AM, Iaccarino MA. Restoration of Vision After Brain Injury Using Magnet Glasses. Am J Phys Med Rehabil 2017;96(4):e70-e74.Abstract

Visual impairments are common after traumatic brain injury (TBI) and negatively affect quality of life. We describe a 39-year-old woman with a severe TBI who was evaluated by the inpatient optometry and vision rehabilitation service with findings of complete right homonymous hemianopia and right cranial nerve III palsy with 30-degree right exotropia (eye turn out) and complete right ptosis (eyelid will not open). The 30-degree exotropia advantageously generated 30 degrees of right visual field expansion when the right ptosis was treated with a magnetic levator prosthesis, which restores eyelid opening. Once opened, the patient used visual field expansion derived from a right exotropia to overcome functional impairments caused by right hemianopia. Field expansion improved the patient's wheelchair mobility and reaching tasks during inpatient therapy. This is the first report of visual field expansion by strabismus facilitated by correction of ptosis. Strabismus should be considered for its potential field expansion benefits when homonymous visual deficits are present, before considering patching. A multidisciplinary vision rehabilitation team is well suited to make this determination.

Houston KE, Barrett AM. Patching for Diplopia Contraindicated in Patients with Brain Injury?. Optom Vis Sci 2017;94(1):120-124.Abstract

PURPOSE: Patching for double vision is a common palliative treatment for head-trauma patients with acquired strabismus when prisms are not feasible. METHODS: We review literature on spatial neglect and discuss possible effects of monocular occlusion on spatial attention. RESULTS: Patching the left eye has been shown to worsen spatial judgments in some brain-injured patients with left neglect by inhibiting the right superior colliculus further impairing contralateral leftward orienting (the Sprague Effect). CONCLUSIONS: Because more peripheral parts of the visual field increasingly project to the contralateral superior colliculus with the temporal crescent being entirely contralateral, avoiding patching of the temporal crescent was advised, and in most cases can be achieved by taping off the spectacle lens and avoiding an elastic eye patch.

Bowers AR, Sheldon SS, DeCarlo DK, Peli E. Bioptic Telescope Use and Driving Patterns of Drivers with Age-Related Macular Degeneration. Transl Vis Sci Technol 2016;5(5):5.Abstract

PURPOSE: To investigate the telescope use and driving patterns of bioptic drivers with age-related macular degeneration (AMD). METHODS: A questionnaire addressing telescope use and driving patterns was administered by telephone interview to three groups of bioptic drivers: AMD (n = 31; median 76 years); non-AMD first licensed with a bioptic (n = 38; 53 years); and non-AMD first licensed without a bioptic (n = 47; 37 years). Driving patterns of bioptic AMD drivers were also compared with those of normal vision (NV) drivers (n = 36; 74 years) and nonbioptic AMD drivers (n = 34; 79 years). RESULTS: Bioptic usage patterns of AMD drivers did not differ from those of the younger bioptic drivers and greater visual difficulty without the bioptic was strongly correlated with greater bioptic helpfulness. Bioptic AMD drivers were more likely to report avoidance of night driving than the age-similar NV drivers (P = 0.06). However, they reported less difficulty than the nonbioptic AMD drivers in all driving situations (P ≤ 0.02). Weekly mileages of bioptic AMD drivers were lower than those of the younger bioptic drivers (P < 0.001), but not the NV group (P = 0.54), and were higher than those of the nonbioptic AMD group (P < 0.001). CONCLUSIONS: Our results suggest that bioptic telescopes met the visual demands of drivers with AMD and that those drivers had relatively unrestricted driving habits. TRANSLATIONAL RELEVANCE: Licensure with a bioptic telescope may prolong driving of older adults with AMD; however, objective measures of bioptic use, driving performance, and safety are needed.

Bowers AR. Driving with homonymous visual field loss: a review of the literature. Clin Exp Optom 2016;99(5):402-18.Abstract

Driving is an important rehabilitation goal for patients with homonymous field defects (HFDs); however, whether or not people with HFDs should be permitted to drive is not clear. Over the last 15 years, there has been a marked increase in the number of studies evaluating the effects of HFDs on driving performance. This review of the literature provides a much-needed summary for practitioners and researchers, addressing the following topics: regulations pertaining to driving with HFDs, self-reported driving difficulties, pass rates in on-road tests, the effects of HFDs on lane position and steering stability, the effects of HFDs on scanning and detection of potential hazards, screening for potential fitness to drive, evaluating practical fitness to drive and the efficacy of interventions to improve driving of persons with HFDs. Although there is clear evidence from on-road studies that some people with HFDs may be rated as safe to drive, others are reported to have significant deficits in skills important for safe driving, including taking a lane position too close to one side of the travel lane, unstable steering and inadequate viewing (scanning) behaviour. Driving simulator studies have provided strong evidence of a wide range in compensatory scanning abilities and detection performance, despite similar amounts of visual field loss. Conventional measurements of visual field extent (in which eye movements are not permitted) do not measure such compensatory abilities and are not predictive of on-road driving performance. Thus, there is a need to develop better tests to screen people with HFDs for visual fitness to drive. We are not yet at a point where we can predict which HFD patient is likely to be a safe driver. Therefore, it seems only fair to provide an opportunity for individualised assessments of practical fitness to drive either on the road and/or in a driving simulator.

Wolfe JM, Evans KK, Drew T, Aizenman A, Josephs E. HOW DO RADIOLOGISTS USE THE HUMAN SEARCH ENGINE?. Radiat Prot Dosimetry 2016;169(1-4):24-31.Abstract

Radiologists perform many 'visual search tasks' in which they look for one or more instances of one or more types of target item in a medical image (e.g. cancer screening). To understand and improve how radiologists do such tasks, it must be understood how the human 'search engine' works. This article briefly reviews some of the relevant work into this aspect of medical image perception. Questions include how attention and the eyes are guided in radiologic search? How is global (image-wide) information used in search? How might properties of human vision and human cognition lead to errors in radiologic search?

Peli E, Bowers AR, Keeney K, Jung J-H. High-Power Prismatic Devices for Oblique Peripheral Prisms. Optom Vis Sci 2016;93(5):521-33.Abstract

PURPOSE: Horizontal peripheral prisms for hemianopia provide field expansion above and below the horizontal meridian; however, there is a vertical gap leaving the central area (important for driving) without expansion. In the oblique design, tilting the bases of both prism segments toward the horizontal meridian moves the field expansion area vertically and centrally (closing the central gap) while the prisms remain in the peripheral location. However, tilting the prisms results also in a reduction of the lateral field expansion. Higher prism powers are needed to counter this effect. METHODS: We developed, implemented, and tested a series of designs aimed at increasing the prism power to reduce the central gap while maintaining wide lateral expansion. The designs included inserting the peripheral prisms into carrier lenses that included yoked prism in the opposite direction, combination of two Fresnel segments attached at the base and angled to each other (bi-part prisms), and creating Fresnel prism-like segments from nonparallel periscopic mirror pairs (reflective prisms). RESULTS: A modest increase in lateral power was achieved with yoked-prism carriers. Bi-part combination of 36Δ Fresnel segments provided high power with some reduction in image quality. Fresnel reflective prism segments have potential for high power with superior optical quality but may be limited in field extent or by interruptions of the expanded field. Extended apical scotomas, even with unilateral fitting, may limit the utility of very high power prisms. The high-power bi-part and reflective prisms enable a wider effective eye scanning range (more than 15 degrees) into the blind hemifield. CONCLUSIONS: Conventional prisms of powers higher than the available 57Δ are limited by the binocular impact of a wider apical scotoma and a reduced effective eye scanning range to the blind side. The various designs that we developed may overcome these limitations and find use in various other field expansion applications.

Wolfe JM, Aizenman AM, Boettcher SEP, Cain MS. Hybrid foraging search: Searching for multiple instances of multiple types of target. Vision Res 2016;119:50-9.Abstract

This paper introduces the "hybrid foraging" paradigm. In typical visual search tasks, observers search for one instance of one target among distractors. In hybrid search, observers search through visual displays for one instance of any of several types of target held in memory. In foraging search, observers collect multiple instances of a single target type from visual displays. Combining these paradigms, in hybrid foraging tasks observers search visual displays for multiple instances of any of several types of target (as might be the case in searching the kitchen for dinner ingredients or an X-ray for different pathologies). In the present experiment, observers held 8-64 target objects in memory. They viewed displays of 60-105 randomly moving photographs of objects and used the computer mouse to collect multiple targets before choosing to move to the next display. Rather than selecting at random among available targets, observers tended to collect items in runs of one target type. Reaction time (RT) data indicate searching again for the same item is more efficient than searching for any other targets, held in memory. Observers were trying to maximize collection rate. As a result, and consistent with optimal foraging theory, they tended to leave 25-33% of targets uncollected when moving to the next screen/patch. The pattern of RTs shows that while observers were collecting a target item, they had already begun searching memory and the visual display for additional targets, making the hybrid foraging task a useful way to investigate the interaction of visual and memory search.

Wolfe JM, Boettcher SEP, Josephs EL, Cunningham CA, Drew T. You look familiar, but I don't care: Lure rejection in hybrid visual and memory search is not based on familiarity. J Exp Psychol Hum Percept Perform 2015;41(6):1576-87.Abstract

In "hybrid" search tasks, observers hold multiple possible targets in memory while searching for those targets among distractor items in visual displays. Wolfe (2012) found that, if the target set is held constant over a block of trials, reaction times (RTs) in such tasks were a linear function of the number of items in the visual display and a linear function of the log of the number of items held in memory. However, in such tasks, the targets can become far more familiar than the distractors. Does this "familiarity"- operationalized here as the frequency and recency with which an item has appeared-influence performance in hybrid tasks In Experiment 1, we compared searches where distractors appeared with the same frequency as the targets to searches where all distractors were novel. Distractor familiarity did not have any reliable effect on search. In Experiment 2, most distractors were novel but some critical distractors were as common as the targets while others were 4× more common. Familiar distractors did not produce false alarm errors, though they did slightly increase RTs. In Experiment 3, observers successfully searched for the new, unfamiliar item among distractors that, in many cases, had been seen only once before. We conclude that when the memory set is held constant for many trials, item familiarity alone does not cause observers to mistakenly confuse target with distractors. (PsycINFO Database Record

Hecht H, Hörichs J, Sheldon S, Quint J, Bowers A. The effects of simulated vision impairments on the cone of gaze. Atten Percept Psychophys 2015;77(7):2399-408.Abstract

Detecting the gaze direction of others is critical for many social interactions. We explored factors that may make the perception of mutual gaze more difficult, including the degradation of the stimulus and simulated vision impairment. To what extent do these factors affect the complex assessment of mutual gaze? Using an interactive virtual head whose eye direction could be manipulated by the subject, we conducted two experiments to assess the effects of simulated vision impairments on mutual gaze. Healthy subjects had to demarcate the center and the edges of the cone of gaze-that is, the range of gaze directions that are accepted for mutual gaze. When vision was impaired by adding a semitransparent white contrast reduction mask to the display (Exp. 1), judgments became more variable and more influenced by the head direction (indicative of a compensation strategy). When refractive blur was added (Exp. 1), the gaze cone shrank from 12.9° (no blur) to 11.3° (3-diopter lens), which cannot be explained by a low-level process but might reflect a tightening of the criterion for mutual gaze as a response to the increased uncertainty. However, the overall effects of the impairments were relatively modest. Elderly subjects (Exp. 2) produced more variability but did not differ qualitatively from the younger subjects. In the face of artificial vision impairments, compensation mechanisms and criterion changes allow us to perform better in mutual gaze perception than would be predicted by a simple extrapolation from the losses in basic visual acuity and contrast sensitivity.

Rinaldi L, Vecchi T, Fantino M, Merabet LB, Cattaneo Z. The effect of hand movements on numerical bisection judgments in early blind and sighted individuals. Cortex 2015;71:76-84.Abstract

Recent evidence suggests that in representing numbers blind individuals might be affected differently by proprioceptive cues (e.g., hand positions, head turns) than are sighted individuals. In this study, we asked a group of early blind and sighted individuals to perform a numerical bisection task while executing hand movements in left or right peripersonal space and with either hand. We found that in bisecting ascending numerical intervals, the hemi-space in which the hand was moved (but not the moved hand itself) influenced the bisection bias similarly in both early blind and sighted participants. However, when numerical intervals were presented in descending order, the moved hand (and not the hemi-space in which it was moved) affected the bisection bias in all participants. Overall, our data show that the operation to be performed on the mental number line affects the activated spatial reference frame, regardless of participants' previous visual experience. In particular, both sighted and early blind individuals' representation of numerical magnitude is mainly rooted in world-centered coordinates when numerical information is given in canonical orientation (i.e., from small to large), whereas hand-centered coordinates become more relevant when the scanning of the mental number line proceeds in non-canonical direction.

Bronstad MP, Albu A, Bowers AR, Goldstein R, Peli E. Driving with Central Visual Field Loss II: How Scotomas above or below the Preferred Retinal Locus (PRL) Affect Hazard Detection in a Driving Simulator. PLoS One 2015;10(9):e0136517.Abstract

We determined whether binocular central scotomas above or below the preferred retinal locus affect detection of hazards (pedestrians) approaching from the side. Seven participants with central field loss (CFL), and seven age-and sex-matched controls with normal vision (NV), each completed two sessions of 5 test drives (each approximately 10 minutes long) in a driving simulator. Participants pressed the horn when detecting pedestrians that appeared at one of four eccentricities (-14°, -4°, left, 4°, or 14°, right, relative to car heading). Pedestrians walked or ran towards the travel lane on a collision course with the participant's vehicle, thus remaining in the same area of the visual field, assuming participant's steady forward gaze down the travel lane. Detection rates were nearly 100% for all participants. CFL participant reaction times were longer (median 2.27s, 95% CI 2.13 to 2.47) than NVs (median 1.17s, 95%CI 1.10 to 2.13; difference p<0.01), and CFL participants would have been unable to stop for 21% of pedestrians, compared with 3% for NV, p<0.001. Although the scotomas were not expected to obscure pedestrian hazards, gaze tracking revealed that scotomas did sometimes interfere with detection; late reactions usually occurred when pedestrians were entirely or partially obscured by the scotoma (time obscured correlated with reaction times, r = 0.57, p<0.001). We previously showed that scotomas lateral to the preferred retinal locus delay reaction times to a greater extent; however, taken together, the results of our studies suggest that any binocular CFL might negatively impact timely hazard detection while driving and should be a consideration when evaluating vision for driving.

Doherty AL, Peli E, Luo G. Hazard detection with a monocular bioptic telescope. Ophthalmic Physiol Opt 2015;35(5):530-9.Abstract

PURPOSE: The safety of bioptic telescopes for driving remains controversial. The ring scotoma, an area to the telescope eye due to the telescope magnification, has been the main cause of concern. This study evaluates whether bioptic users can use the fellow eye to detect in hazards driving videos that fall in the ring scotoma area. METHODS: Twelve visually impaired bioptic users watched a series of driving hazard perception training videos and responded as soon as they detected a hazard while reading aloud letters presented on the screen. The letters were placed such that when reading them through the telescope the hazard fell in the ring scotoma area. Four conditions were tested: no bioptic and no reading, reading without bioptic, reading with a bioptic that did not occlude the fellow eye (non-occluding bioptic), and reading with a bioptic that partially-occluded the fellow eye. Eight normally sighted subjects performed the same task with the partially occluding bioptic detecting lateral hazards (blocked by the device scotoma) and vertical hazards (outside the scotoma) to further determine the cause-and-effect relationship between hazard detection and the fellow eye. RESULTS: There were significant differences in performance between conditions: 83% of hazards were detected with no reading task, dropping to 67% in the reading task with no bioptic, to 50% while reading with the non-occluding bioptic, and 34% while reading with the partially occluding bioptic. For normally sighted, detection of vertical hazards (53%) was significantly higher than lateral hazards (38%) with the partially occluding bioptic. CONCLUSIONS: Detection of driving hazards is impaired by the addition of a secondary reading like task. Detection is further impaired when reading through a monocular telescope. The effect of the partially-occluding bioptic supports the role of the non-occluded fellow eye in compensating for the ring scotoma.

Haun AM, Peli E. Similar Sensitivity to Ladder Contours in Macular Degeneration Patients and Controls. PLoS One 2015;10(7):e0128119.Abstract

PURPOSE: To determine whether people with central field loss (CFL) from macular degeneration have improved ability to recognize a particularly difficult spatial configuration embedded in noise, the peripherally-viewed 'ladder contour'. The visibility of these configuration has been linked to general contour integration ability and crowding limitations in peripheral vision. METHODS: We used a trial-based yes-no task. CFL patients and normally-sighted controls performed the task, looking for ladder contours embedded in a field of randomly oriented Gabor patches, at a range of stimulus presentation times (varying stimulus difficulty). Viewing eccentricity in CFL patients was set by their preferred retinal loci (PRLs) and matched artificially in the control group. The contours were presented so as to be tangent to the CFL region, given a patient's PRL location. RESULTS: CFL and normally-sighted groups performed similarly on the task. The only significant determinant of performance was the viewing eccentricity. CONCLUSIONS: CFL patients do not seem to develop any improved ability to recognize ladder contours with their parafoveal retina, which suggests that there is no underlying improvement in contour integration or reduction in crowding limitations in the region of the PRL despite extended daily use.

Houston KE, Woods RL, Goldstein RB, Peli E, Luo G, Bowers AR. Asymmetry in the Collision Judgments of People With Homonymous Field Defects and Left Hemispatial Neglect. Invest Ophthalmol Vis Sci 2015;56(6):4135-42.Abstract

PURPOSE: Although the impact of homonymous visual field defects (HFDs) on mobility has been investigated previously, the emphasis has been on obstacle detection. Relatively little is known about HFD patients' ability to judge collisions once an obstacle is detected. We investigated this using a walking simulator. METHODS: Patients with HFDs (n = 29) and subjects with normal vision (NV; n = 21) were seated in front of a large screen on which a visual simulation of walking was displayed. They made collision judgments for a human figure that appeared for 1 second at lateral offsets from the virtual walking path. A perceived-collision threshold was calculated for right and left sides. RESULTS: Symmetrical collision thresholds (same on left and right sides) were measured for participants with NV (n = 21), and right (n = 9) and left (n = 7) HFD without hemispatial neglect. Participants with left neglect (n = 10) showed significant asymmetry with thresholds smaller (compared to the NV group and other HFD groups) on the blind (P < 0.001) and larger on the seeing (P = 0.05) sides. Despite the asymmetry, the overall width of the zone of perceived collision risk was not different, suggesting a relatively uniform rightward deviation in judgments of the left neglect group. CONCLUSIONS: Left neglect was associated with rightward asymmetry in collision judgments, which may cause collisions on the left side even when an obstacle is detected. These behaviors may represent the spatial misperceptions in body midline described previously in patients with left neglect.