Neuro-ophthalmology publications

Zajac L, Koo B-B, Bauer CM, Killiany R, Killiany R. Seed Location Impacts Whole-Brain Structural Network Comparisons between Healthy Elderly and Individuals with Alzheimer's Disease. Brain Sci 2017;7(4)Abstract

Whole-brain networks derived from diffusion tensor imaging (DTI) data require the identification of seed and target regions of interest (ROIs) to assess connectivity patterns. This study investigated how initiating tracts from gray matter (GM) or white matter (WM) seed ROIs impacts (1) structural networks constructed from DTI data from healthy elderly (control) and individuals with Alzheimer's disease (AD) and (2) between-group comparisons using these networks. DTI datasets were obtained from the Alzheimer's disease Neuroimaging Initiative database. Deterministic tractography was used to build two whole-brain networks for each subject; one in which tracts were initiated from WM ROIs and another in which they were initiated from GM ROIs. With respect to the first goal, in both groups, WM-seeded networks had approximately 400 more connections and stronger connections (as measured by number of streamlines per connection) than GM-seeded networks, but shared 94% of the connections found in the GM-seed networks. With respect to the second goal, between-group comparisons revealed a stronger subnetwork (as measured by number of streamlines per connection) in controls compared to AD using both WM-seeded and GM-seeded networks. The comparison using WM-seeded networks produced a larger (i.e., a greater number of connections) and more significant subnetwork in controls versus AD. Global, local, and nodal efficiency were greater in controls compared to AD, and between-group comparisons of these measures using WM-seeded networks had larger effect sizes than those using GM-seeded networks. These findings affirm that seed location significantly affects the ability to detect between-group differences in structural networks.

Jamuar SS, Schmitz-Abe K, D'Gama AM, Drottar M, Chan W-M, Peeva M, Servattalab S, Lam A-TN, Delgado MR, Clegg NJ, Zayed ZA, Dogar MA, Alorainy IA, Jamea AA, Abu-Amero K, Griebel M, Ward W, Lein ES, Markianos K, Barkovich JA, Robson CD, Grant EP, Bosley TM, Engle EC, Walsh CA, Yu TW. Biallelic mutations in human DCC cause developmental split-brain syndrome. Nat Genet 2017;49(4):606-612.Abstract

Motor, sensory, and integrative activities of the brain are coordinated by a series of midline-bridging neuronal commissures whose development is tightly regulated. Here we report a new human syndrome in which these commissures are widely disrupted, thus causing clinical manifestations of horizontal gaze palsy, scoliosis, and intellectual disability. Affected individuals were found to possess biallelic loss-of-function mutations in the gene encoding the axon-guidance receptor 'deleted in colorectal carcinoma' (DCC), which has been implicated in congenital mirror movements when it is mutated in the heterozygous state but whose biallelic loss-of-function human phenotype has not been reported. Structural MRI and diffusion tractography demonstrated broad disorganization of white-matter tracts throughout the human central nervous system (CNS), including loss of all commissural tracts at multiple levels of the neuraxis. Combined with data from animal models, these findings show that DCC is a master regulator of midline crossing and development of white-matter projections throughout the human CNS.

Bouffard MA, Caplan LR, Torun N. Divergence Palsy due to Divalproex and Oxcarbazepine. Clin Neuropharmacol 2017;Abstract

OBJECTIVE: This case series is the first to describe divergence palsy as an adverse effect of antiepileptic drug use. Diplopia is a common adverse effect of antiepileptic drugs, but no explanatory motility deficit has ever been reported. METHODS: We present 2 patients, 1 on oxcarbazepine and 1 on divalproex, each with a normal examination result between spells and divergency palsy when symptomatic. RESULTS: Discontinuation of the antiepileptic medication led to resolution of the episodes in both cases. Rechallenge with the offending agent after washout in one patient resulted in recurrence of diplopia and divergence palsy, both resolving after subsequent withdrawal of the antiepileptic. CONCLUSIONS: Antiepileptic drugs may cause divergence palsy.

Li Y, Andereggen L, Yuki K, Omura K, Yin Y, Gilbert H-Y, Erdogan B, Asdourian MS, Shrock C, de Lima S, Apfel U-P, Zhuo Y, Hershfinkel M, Lippard SJ, Rosenberg PA, Benowitz L. Mobile zinc increases rapidly in the retina after optic nerve injury and regulates ganglion cell survival and optic nerve regeneration. Proc Natl Acad Sci U S A 2017;114(2):E209-E218.Abstract

Retinal ganglion cells (RGCs), the projection neurons of the eye, cannot regenerate their axons once the optic nerve has been injured and soon begin to die. Whereas RGC death and regenerative failure are widely viewed as being cell-autonomous or influenced by various types of glia, we report here that the dysregulation of mobile zinc (Zn(2+)) in retinal interneurons is a primary factor. Within an hour after the optic nerve is injured, Zn(2+) increases several-fold in retinal amacrine cell processes and continues to rise over the first day, then transfers slowly to RGCs via vesicular release. Zn(2+) accumulation in amacrine cell processes involves the Zn(2+) transporter protein ZnT-3, and deletion of slc30a3, the gene encoding ZnT-3, promotes RGC survival and axon regeneration. Intravitreal injection of Zn(2+) chelators enables many RGCs to survive for months after nerve injury and regenerate axons, and enhances the prosurvival and regenerative effects of deleting the gene for phosphatase and tensin homolog (pten). Importantly, the therapeutic window for Zn(2+) chelation extends for several days after nerve injury. These results show that retinal Zn(2+) dysregulation is a major factor limiting the survival and regenerative capacity of injured RGCs, and point to Zn(2+) chelation as a strategy to promote long-term RGC protection and enhance axon regeneration.

Benowitz LI, He Z, Goldberg JL. Reaching the brain: Advances in optic nerve regeneration. Exp Neurol 2017;287(Pt 3):365-373.Abstract

The optic nerve has been widely used to investigate factors that regulate axon regeneration in the mammalian CNS. Although retinal ganglion cells (RGCs), the projection neurons of the eye, show little capacity to regenerate their axons following optic nerve damage, studies spanning the 20(th) century showed that some RGCs can regenerate axons through a segment of peripheral nerve grafted to the optic nerve. More recently, some degree of regeneration has been achieved through the optic nerve itself by factors associated with intraocular inflammation (oncomodulin) or by altering levels of particular transcription factors (Klf-4, -9, c-myc), cell-intrinsic suppressors of axon growth (PTEN, SOCS3), receptors to cell-extrinsic inhibitors of axon growth (Nogo receptor, LAR, PTP-σ) or the intracellular signaling pathway activated by these receptors (RhoA). Other regulators of regeneration and cell survival continue to be identified in this system at a rapid pace. Combinatorial treatments that include two or more of these factors enable some retinal ganglion cells to regenerate axons from the eye through the entire length of the optic nerve and across the optic chiasm. In some cases, regenerating axons have been shown to innervate the appropriate central target areas and elicit postsynaptic responses. Many discoveries made in this system have been found to enhance axon regeneration after spinal cord injury. Thus, progress in optic nerve regeneration holds promise not only for visual restoration but also for improving outcome after injury to other parts of the mature CNS.

Thon OR, Gittinger JW. Medication-Related Pseudotumor Cerebri Syndrome. Semin Ophthalmol 2017;32(1):134-143.Abstract

Pseudotumor cerebri syndrome refers to elevated intracranial pressure associated with papilledema without an identified etiology for intracranial hypertension. Over the past few decades, several medications have been described to be associated with this syndrome. We searched the literature for those case reports and series and evaluated the evidence for the association of such medications with pseudotumor cerebri syndrome.

Bouffard MA, Nathavitharana RR, Yassa DS, Torun N. Re-Treatment With Ethambutol After Toxic Optic Neuropathy. J Neuroophthalmol 2017;37(1):40-42.Abstract

There are no data in the literature regarding the safety of re-treatment with ethambutol for recurrent mycobacterial infection after prior ethambutol-induced optic neuropathy. We describe a patient who developed optic neuropathy attributed to ethambutol, recovered fully after drug withdrawal, and tolerated a 14-month long re-treatment 10 years later without developing recurrent optic neuropathy.

Cestari DM, Gaier ED, Bouzika P, Blachley TS, De Lott LB, Rizzo JF, Wiggs JL, Kang JH, Pasquale LR, Stein JD. Demographic, Systemic, and Ocular Factors Associated with Nonarteritic Anterior Ischemic Optic Neuropathy. Ophthalmology 2016;123(12):2446-2455.Abstract

OBJECTIVE: Nonarteritic anterior ischemic optic neuropathy (NAION) is a devastating ocular condition causing permanent vision loss. Little is known about risk factors for developing this disease. We assessed demographic, systemic, and ocular factors associated with NAION. DESIGN: Retrospective longitudinal cohort study. PARTICIPANTS: Beneficiaries between 40 and 75 years old without NAION at baseline enrolled in a large U.S. managed care network. METHODS: Enrollees were monitored continuously for ≥2 years between 2001 and 2014 to identify those newly diagnosed with NAION (International Classification of Diseases, 9th Revision, Clinical Modification [ICD-9-CM] code 377.41). All persons were under ophthalmic surveillance and all cases had ≥1 confirmatory ICD-9-CM code for NAION during follow-up. MAIN OUTCOME MEASURES: Multivariable Cox regression modeling was used to generate hazard ratios (HRs) with 95% confidence intervals (CIs) to describe the statistical relationship between selected demographic characteristics, systemic and ocular conditions, and the hazard of developing NAION. RESULTS: Of 1 381 477 eligible enrollees, 977 (0.1%) developed NAION during a mean ± standard deviation (SD) follow-up of 7.8±3.1 years. The mean ± SD age for NAION cases at the index date was 64.0±9.2 years vs. 58.4±9.4 years for the remainder of the beneficiaries. After adjustment for confounding factors, each additional year older was associated with a 2% increased hazard of NAION (HR = 1.02; 95% CI: 1.01-1.03). Female subjects had a 36% decreased hazard of developing NAION (HR = 0.64; 95% CI: 0.55-0.74) compared with male subjects. Compared with whites, Latinos had a 46% decreased hazard of developing NAION (HR = 0.54; 95% CI: 0.36-0.82), whereas African ancestry was not significantly associated with NAION (HR = 0.91; 95% CI: 0.72-1.15). Systemic diseases associated with NAION included hypertension (HR = 1.62; 95% CI: 1.26-2.07) and hypercoagulable states (HR = 2.46; 95% CI: 1.51-4.00). Although diabetes mellitus (DM) was not significantly associated with NAION compared with those without DM (P = 0.45), patients with end-organ involvement from DM had a 27% increased hazard of NAION relative to those with uncomplicated DM (HR = 1.27; 95% CI: 1.01-1.59). Ocular diseases associated with NAION were age-related macular degeneration (HR = 1.29; 95% CI: 1.08-1.54) and retinal vein occlusion (HR = 3.94; 95% CI: 3.11-4.99). CONCLUSIONS: Our study identified several modifiable risk factors that may be associated with NAION. Should future studies confirm these findings, they may offer opportunities to prevent or treat this debilitating condition.

Torun N, Laviv Y, Jazi KK, Mahadevan A, Bhadelia RA, Matthew A, Strominger M, Kasper EM. Schwannoma of the trochlear nerve-an illustrated case series and a systematic review of management. Neurosurg Rev 2016;Abstract

Schwannomas of cranial nerves in the absence of systemic neurofibromatosis are relatively rare. Among these, schwannomas of the trochlear nerve are even less common. They can be found incidentally or when they cause diplopia or other significant neurological deficits. Treatment options include observation only, neuro-ophthalmological intervention, and/or neurosurgical management via resection or sterotactic radiosurgery (SRS). In recent years, the latter has become an attractive therapeutic tool for a number of benign skull base neoplasm including a small number of reports on its successful use for trochlear Schwannomas. However, no treatment algorithm for the management of these tumors has been proposed so far. The goal of this manuscript is to illustrate a case series of this rare entity and to suggest a rational treatment algorithm for trochlear schwannomas, based on our institutional experience of recent cases, and a pertinent review of the literature. Including our series of 5 cases, a total of 85 cases reporting on the management of trochlear schwannomas have been published. Of those reported, less than half (40 %) of patients underwent surgical resection, whereas the remainder were managed conservatively or with SRS. Seventy-six percent (65/85) of the entire cohort presented with diplopia, which was the solitary symptom in over half of the cases (n = 39). All patients who presented with symptoms other than diplopia or headaches as solitary symptoms underwent surgical resection. Patients in the non-surgical group were mostly male (M/F = 3.5:1), presented at an older age and had shorter mean diameter (4.6 vs. 30.4 mm, p < 0.0001) when compared to the surgical group. Twelve patients in the entire cohort were treated with SRS, none of whom had undergone surgical resection before or after radiation treatment. Trochlear schwannoma patients without systemic neurofibromatosis are rare and infrequently reported in the literature. Of those, patients harboring symptomatic trochlear Schwannomas do not form a single homogenous group, but fall into two rather distinct subgroups regarding demographics and clinical characteristics. Among those patients in need of intervention, open microsurgical resection as well as less invasive treatment options exist, which all aim at safe relief of symptoms and prevention of progression. Both open microsurgical removal as well as SRS can achieve good long-term local control. Consequently, a tailored multidisciplinary treatment algorithm, based on the individual presentation and tumor configuration, is proposed.

Chun BY, Rizzo JF. Dominant optic atrophy: updates on the pathophysiology and clinical manifestations of the optic atrophy 1 mutation. Curr Opin Ophthalmol 2016;Abstract

PURPOSE OF REVIEW: Review recent advances in clinical and experimental studies of dominant optic atrophy (DOA) to better understand the complexities of pathophysiology caused by the optic atrophy 1 (OPA1) mutation. RECENT FINDINGS: DOA is the most commonly diagnosed inherited optic atrophy, causing progressive bilateral visual loss that begins early in life. During the past 25 years, there has been substantial progress in the understanding of the clinical, genetic, and pathophysiological basis of this disease. The histopathological hallmark of DOA is the primary degeneration of retinal ganglion cells, preferentially in the papillomacular bundle, which results temporal optic disc pallor and cecocentral scotomata in patients with DOA. Loss of OPA1 protein function by OPA1 gene mutations causes mitochondrial dysfunction because of the loss of mitochondrial fusion, impaired mitochondrial oxidative phosphorylation, increases in reactive oxygen species, and altered calcium homeostasis. These factors lead to apoptosis of retinal ganglion cells by a haploinsufficiency mechanism. SUMMARY: Improved understanding of the pathophysiology of DOA provides insights that can be used to develop therapeutic approaches to the DOA.