Retinal Degenerations

Li S, Datta S, Brabbit E, Love Z, Woytowicz V, Flattery K, Capri J, Yao K, Wu S, Imboden M, Upadhyay A, Arumugham R, Thoreson WB, Deangelis MM, Haider NB. Nr2e3 is a genetic modifier that rescues retinal degeneration and promotes homeostasis in multiple models of retinitis pigmentosa. Gene Ther 2021;28(5):223-241.Abstract
Recent advances in viral vector engineering, as well as an increased understanding of the cellular and molecular mechanism of retinal diseases, have led to the development of novel gene therapy approaches. Furthermore, ease of accessibility and ocular immune privilege makes the retina an ideal target for gene therapies. In this study, the nuclear hormone receptor gene Nr2e3 was evaluated for efficacy as broad-spectrum therapy to attenuate early to intermediate stages of retinal degeneration in five unique mouse models of retinitis pigmentosa (RP). RP is a group of heterogenic inherited retinal diseases associated with over 150 gene mutations, affecting over 1.5 million individuals worldwide. RP varies in age of onset, severity, and rate of progression. In addition, ~40% of RP patients cannot be genetically diagnosed, confounding the ability to develop personalized RP therapies. Remarkably, Nr2e3 administered therapy resulted in reduced retinal degeneration as observed by increase in photoreceptor cells, improved electroretinogram, and a dramatic molecular reset of key transcription factors and associated gene networks. These therapeutic effects improved retinal homeostasis in diseased tissue. Results of this study provide evidence that Nr2e3 can serve as a broad-spectrum therapy to treat multiple forms of RP.
Ning K, Song E, Sendayen BE, Prosseda PP, Chang K-C, Ghaffarieh A, Alvarado JA, Wang B, Haider KM, Berbari NF, Hu Y, Sun Y. Defective INPP5E distribution in NPHP1-related Senior-Loken syndrome. Mol Genet Genomic Med 2020;:e1566.Abstract
BACKGROUND: Senior-Loken syndrome is a rare genetic disorder that presents with nephronophthisis and retinal degeneration, leading to end-stage renal disease and progressive blindness. The most frequent cause of juvenile nephronophthisis is a mutation in the nephronophthisis type 1 (NPHP1) gene. NPHP1 encodes the protein nephrocystin-1, which functions at the transition zone (TZ) of primary cilia. METHODS: We report a 9-year-old Senior-Loken syndrome boy with NPHP1 deletion, who presents with bilateral vision decrease and cystic renal disease. Renal function deteriorated to require bilateral nephrectomy and renal transplant. We performed immunohistochemistry, H&E staining, and electron microscopy on the renal sample to determine the subcellular distribution of ciliary proteins in the absence of NPHP1. RESULTS: Immunohistochemistry and electron microscopy of the resected kidney showed disorganized cystic structures with loss of cilia in renal tubules. Phosphoinositides have been recently recognized as critical components of the ciliary membrane and immunostaining of kidney sections for phosphoinositide 5-phosphatase, INPP5E, showed loss of staining compared to healthy control. Ophthalmic examination showed decreased electroretinogram consistent with early retinal degeneration. CONCLUSION: The decreased expression of INPP5E specifically in the primary cilium, coupled with disorganized cilia morphology, suggests a novel role of NPHP1 that it is involved in regulating ciliary phosphoinositide composition in the ciliary membrane of renal tubular cells.
Dutta Majumder P, Marchese A, Pichi F, Garg I, Agarwal A. An update on autoimmune retinopathy. Indian J Ophthalmol 2020;68(9):1829-1837.Abstract
Autoimmune retinopathy (AIR) refers to a group of rare autoimmune retinal degenerative diseases presumably caused by cross-reactivity of serum autoantibodies against retinal antigens. The pathogenesis of AIR remains largely presumptive and there are a significant number of antiretinal antibodies that have been detected in association with AIR. The diagnosis of AIR is largely based on the demonstration of antiretinal antibodies in the serum along with suggestive clinical features and ancillary investigations. A high index of suspicion along with early diagnosis and treatment may play a critical role to lower the risk of irreversible immunological damage to the retinal cells in these patients. A multi-disciplinary approach for complete management and evaluation is helpful in such conditions. Various therapeutic options have been described for the treatment of AIR, though there is no consensus on standard treatment protocol.
Wang SK, Xue Y, Cepko CL. Microglia modulation by TGF-β1 protects cones in mouse models of retinal degeneration. J Clin Invest 2020;130(8):4360-4369.Abstract
Retinitis pigmentosa (RP) is a genetically heterogenous group of eye diseases in which initial degeneration of rods triggers secondary degeneration of cones, leading to significant loss of daylight, color, and high-acuity vision. Gene complementation with adeno-associated viral (AAV) vectors is one strategy to treat RP. Its implementation faces substantial challenges, however; for example, the tremendous number of loci with causal mutations. Gene therapy targeting secondary cone degeneration is an alternative approach that could provide a much-needed generic treatment for many patients with RP. Here, we show that microglia are required for the upregulation of potentially neurotoxic inflammatory factors during cone degeneration in RP, creating conditions that might contribute to cone dysfunction and death. To ameliorate the effects of such factors, we used AAV vectors to express isoforms of the antiinflammatory cytokine transforming growth factor beta (TGF-β). AAV-mediated delivery of TGF-β1 rescued degenerating cones in 3 mouse models of RP carrying different pathogenic mutations. Treatment with TGF-β1 protected vision, as measured by 2 behavioral assays, and could be pharmacologically disrupted by either depleting microglia or blocking the TGF-β receptors. Our results suggest that TGF-β1 may be broadly beneficial for patients with cone degeneration, and potentially other forms of neurodegeneration, through a pathway dependent upon microglia.
Bronstein R, Capowski EE, Mehrotra S, Jansen AD, Navarro-Gomez D, Maher M, Place E, Sangermano R, Bujakowska KM, Gamm DM, Pierce EA. A combined RNA-seq and whole genome sequencing approach for identification of non-coding pathogenic variants in single families. Hum Mol Genet 2020;29(6):967-979.Abstract
Inherited retinal degenerations (IRDs) are at the focus of current genetic therapeutic advancements. For a genetic treatment such as gene therapy to be successful, an accurate genetic diagnostic is required. Genetic diagnostics relies on the assessment of the probability that a given DNA variant is pathogenic. Non-coding variants present a unique challenge for such assessments as compared to coding variants. For one, non-coding variants are present at much higher number in the genome than coding variants. In addition, our understanding of the rules that govern the non-coding regions of the genome is less complete than our understanding of the coding regions. Methods that allow for both the identification of candidate non-coding pathogenic variants and their functional validation may help overcome these caveats allowing for a greater number of patients to benefit from advancements in genetic therapeutics. We present here an unbiased approach combining whole genome sequencing (WGS) with patient-induced pluripotent stem cell (iPSC)-derived retinal organoids (ROs) transcriptome analysis. With this approach, we identified and functionally validated a novel pathogenic non-coding variant in a small family with a previously unresolved genetic diagnosis.
Zampaglione E, Kinde B, Place EM, Navarro-Gomez D, Maher M, Jamshidi F, Nassiri S, Mazzone AJ, Finn C, Schlegel D, Comander J, Pierce EA, Bujakowska KM. Copy-number variation contributes 9% of pathogenicity in the inherited retinal degenerations. Genet Med 2020;22(6):1079-1087.Abstract
PURPOSE: Current sequencing strategies can genetically solve 55-60% of inherited retinal degeneration (IRD) cases, despite recent progress in sequencing. This can partially be attributed to elusive pathogenic variants (PVs) in known IRD genes, including copy-number variations (CNVs), which have been shown as major contributors to unsolved IRD cases. METHODS: Five hundred IRD patients were analyzed with targeted next-generation sequencing (NGS). The NGS data were used to detect CNVs with ExomeDepth and gCNV and the results were compared with CNV detection with a single-nucleotide polymorphism (SNP) array. Likely causal CNV predictions were validated by quantitative polymerase chain reaction (qPCR). RESULTS: Likely disease-causing single-nucleotide variants (SNVs) and small indels were found in 55.6% of subjects. PVs in USH2A (11.6%), RPGR (4%), and EYS (4%) were the most common. Likely causal CNVs were found in an additional 8.8% of patients. Of the three CNV detection methods, gCNV showed the highest accuracy. Approximately 30% of unsolved subjects had a single likely PV in a recessive IRD gene. CONCLUSION: CNV detection using NGS-based algorithms is a reliable method that greatly increases the genetic diagnostic rate of IRDs. Experimentally validating CNVs helps estimate the rate at which IRDs might be solved by a CNV plus a more elusive variant.
Xiao J, Adil MY, Chang K, Yu Z, Yang L, Utheim TP, Chen DF, Cho K-S. Visual Contrast Sensitivity Correlates to the Retinal Degeneration in Rhodopsin Knockout Mice. Invest Ophthalmol Vis Sci 2019;60(13):4196-4204.Abstract
Purpose: Clinical manifestations of photoreceptor degeneration include gradual thinning of the outer nuclear layer (ONL) and progressive reduction of electroretinogram (ERG) amplitudes and vision loss. Although preclinical evaluations of treatment strategies greatly depend on rodent models, the courses of these changes in mice remain unclear. We thus sought to investigate the temporal correlations in changes of spatial vision, ERG response, and ONL thickness in mice with progressive photoreceptor degeneration. Methods: Adult wild-type (WT) mice and mice carrying rhodopsin deficiency (Rho-/-), a frequently used mouse model of human retinitis pigmentosa, were selected for investigation. Mouse spatial vision, including visual acuity (VA) and contrast sensitivity (CS), was determined using optomotor response (OMR) assays; ONL thickness was quantified by spectral-domain optical coherence tomography (SD-OCT), and ERG was performed to evaluate retinal functions. The mice were killed when they were 14 weeks old, and the cone photoreceptors in retinal sections were counted. Results: Spatial vision, ONL thickness, and ERG amplitudes remained stable in WT mice at all examined time points. While 6-week-old Rho-/- mice had VA, CS, as well as ERG responses similar to those of WT mice, progressive reductions in the spatial vision and retinal functions were recorded thereafter. Most tested 12-week-old Rho-/- mice had no visual-evoked OMR and ERG responses. Moreover, CS, but not VA, displayed a linear decline that was closely associated with ONL thinning, reduction of ERG amplitudes, and loss of cones. Conclusions: We presented a comprehensive study of the relation between the changes of spatial vision, retinal function, and ONL thickness in postnatal week (PW)6 to PW12 Rho-/- mice. CS is a more sensitive indicator of spatial vision compared to VA, although both are required as separate parameters for monitoring the visual changes in retina undergoing photoreceptor degeneration.
Chekuri A, Zientara-Rytter K, Soto-Hermida A, Borooah S, Voronchikhina M, Biswas P, Kumar V, Goodsell D, Hayward C, Shaw P, Stanton C, Garland D, Subramani S, Ayyagari R. Late-onset retinal degeneration pathology due to mutations in CTRP5 is mediated through HTRA1. Aging Cell 2019;18(6):e13011.Abstract
Late-onset retinal degeneration (L-ORD) is an autosomal dominant macular degeneration characterized by the formation of sub-retinal pigment epithelium (RPE) deposits and neuroretinal atrophy. L-ORD results from mutations in the C1q-tumor necrosis factor-5 protein (CTRP5), encoded by the CTRP5/C1QTNF5 gene. To understand the mechanism underlying L-ORD pathology, we used a human cDNA library yeast two-hybrid screen to identify interacting partners of CTRP5. Additionally, we analyzed the Bruch's membrane/choroid (BM-Ch) from wild-type (Wt), heterozygous S163R Ctrp5 mutation knock-in (Ctrp5 ), and homozygous knock-in (Ctrp5 ) mice using mass spectrometry. Both approaches showed an association between CTRP5 and HTRA1 via its C-terminal PDZ-binding motif, stimulation of the HTRA1 protease activity by CTRP5, and CTRP5 serving as an HTRA1 substrate. The S163R-CTRP5 protein also binds to HTRA1 but is resistant to HTRA1-mediated cleavage. Immunohistochemistry and proteomic analysis showed significant accumulation of CTRP5 and HTRA1 in BM-Ch of Ctrp5 and Ctrp5 mice compared with Wt. Additional extracellular matrix (ECM) components that are HTRA1 substrates also accumulated in these mice. These results implicate HTRA1 and its interaction with CTRP5 in L-ORD pathology.
Rosales MAB, Shu DY, Iacovelli J, Saint-Geniez M. Loss of PGC-1α in RPE induces mesenchymal transition and promotes retinal degeneration. Life Sci Alliance 2019;2(3)Abstract
The retinal pigment epithelium (RPE) supports visual processing and photoreceptor homeostasis via energetically demanding cellular functions. Here, we describe the consequences of repressing peroxisome proliferator-activated receptor γ coactivator-1 α (PGC-1α), a master regulator of mitochondrial function and biogenesis, on RPE epithelial integrity. The sustained silencing of PGC-1α in differentiating human RPE cells affected mitochondria/autophagy function, redox state, and impaired energy sensor activity ultimately inducing epithelial to mesenchymal transition (EMT). Adult conditional knockout of PGC-1 coactivators in mice resulted in rapid RPE dysfunction and transdifferentiation associated with severe photoreceptor degeneration. RPE anomalies were characteristic of autophagic defect and mesenchymal transition comparable with the ones observed in age-related macular degeneration. These findings demonstrate that PGC-1α is required to maintain the functional and phenotypic status of RPE by supporting the cells' oxidative metabolism and autophagy-mediated repression of EMT.
Mukai R, Park DH, Okunuki Y, Hasegawa E, Klokman G, Kim CB, Krishnan A, Gregory-Ksander M, Husain D, Miller JW, Connor KM. Mouse model of ocular hypertension with retinal ganglion cell degeneration. PLoS One 2019;14(1):e0208713.Abstract
OBJECTIVES: Ocular hypertension is a primary risk factor for glaucoma and results in retinal ganglion cell (RGC) degeneration. Current animal models of glaucoma lack severe RGC cell death as seen in glaucoma, making assessment of physiological mediators of cell death difficult. We developed a modified mouse model of ocular hypertension whereby long-lasting elevation of intraocular pressure (IOP) is achieved, resulting in significant reproducible damage to RGCs. RESULTS: In this model, microbeads are mixed with hyaluronic acid and injected into the anterior chamber of C57BL/6J mice. The hyaluronic acid allows for a gradual release of microbeads, resulting in sustained blockage of Schlemm's canal. IOP elevation was bimodal during the course of the model's progression. The first peak occurred 1 hours after beads injection, with an IOP value of 44.69 ± 6.00 mmHg, and the second peak occurred 6-12 days post-induction, with an IOP value of 34.91 ± 5.21 mmHg. RGC damage was most severe in the peripheral retina, with a loss of 64.1% compared to that of untreated eyes, while the midperiphery exhibited a 32.4% loss, 4 weeks following disease induction. CONCLUSIONS: These results suggest that sustained IOP elevation causes more RGC damage in the periphery than in the midperiphery of the retina. This model yields significant and reproducible RGC degeneration.
Chew EY, Clemons TE, Jaffe GJ, Johnson CA, Farsiu S, Lad EM, Guymer R, Rosenfeld P, Hubschman J-P, Constable I, Wiley H, Singerman LJ, Gillies M, Comer G, Blodi B, Eliott D, Yan J, Bird A, Friedlander M, Group MTT 2-PCNTFR2. Effect of Ciliary Neurotrophic Factor on Retinal Neurodegeneration in Patients with Macular Telangiectasia Type 2: A Randomized Clinical Trial. Ophthalmology 2019;126(4):540-549.Abstract
PURPOSE: To test the effects of an encapsulated cell-based delivery of a neuroprotective agent, ciliary neurotrophic factor (CNTF), on progression of macular telangiectasia type 2, a neurodegenerative disease with no proven effective therapy. DESIGN: Randomized sham-controlled clinical trial. PARTICIPANTS: Ninety-nine study eyes of 67 eligible participants were enrolled. METHODS: Single-masked randomized clinical trial of 24 months' duration conducted from May 2014 through April 2017 in 11 clinical centers of retinal specialists in the United States and Australia. Participants were randomized 1:1 to surgical implantation of intravitreal sustained delivery of human CNTF versus a sham procedure. MAIN OUTCOME MEASURES: The primary outcome was the difference in the area of neurodegeneration as measured in the area of the ellipsoid zone disruption (or photoreceptor loss) measured on spectral-domain (SD) OCT images at 24 months from baseline between the treated and untreated groups. Secondary outcomes included comparison of visual function changes between treatment groups. RESULTS: Among the 67 participants who were randomized (mean age, 62±8.9 years; 41 women [61%]; 58 white persons [86%]), 65 (97%) completed the study. Two participants (3 study eyes) died and 3 participants (4 eyes) were found ineligible. The eyes receiving sham treatment had 31% greater progression of neurodegeneration than the CNTF-treated eyes. The difference in mean area of photoreceptor loss was 0.05±0.03 mm (P = 0.04) at 24 months. Retinal sensitivity changes, measured using microperimetry, were correlated highly with the changes in the area of photoreceptor loss (r = 0.86; P < 0.0001). The mean retinal sensitivity loss of the sham group was 45% greater than that of the treated group (decrease, 15.81±8.93 dB; P = 0.07). Reading speed deteriorated in the sham group (-13.9 words per minute) with no loss in the treated group (P = 0.02). Serious adverse ocular effects were found in 2 of 51 persons (4%) in the sham group and 2 of 48 persons (4%) in the treated group. CONCLUSIONS: In participants with macular telangiectasia type 2, a surgical implant that released CNTF into the vitreous cavity, compared with a sham procedure, slowed the progression of retinal degeneration. Further research is needed to assess longer-term clinical outcomes and safety.
Wareham LK, Dordea AC, Schleifer G, Yao V, Batten A, Fei F, Mertz J, Gregory-Ksander M, Pasquale LR, Buys ES, Sappington RM. Increased bioavailability of cyclic guanylate monophosphate prevents retinal ganglion cell degeneration. Neurobiol Dis 2019;121:65-75.Abstract
The nitric oxide - guanylyl cyclase-1 - cyclic guanylate monophosphate (NO-GC-1-cGMP) pathway has emerged as a potential pathogenic mechanism for glaucoma, a common intraocular pressure (IOP)-related optic neuropathy characterized by the degeneration of retinal ganglion cells (RGCs) and their axons in the optic nerve. NO activates GC-1 to increase cGMP levels, which are lowered by cGMP-specific phosphodiesterase (PDE) activity. This pathway appears to play a role in both the regulation of IOP, where reduced cGMP levels in mice leads to elevated IOP and subsequent RGC degeneration. Here, we investigated whether potentiation of cGMP signaling could protect RGCs from glaucomatous degeneration. We administered the PDE5 inhibitor tadalafil orally (10 mg/kg/day) in murine models of two forms of glaucoma - primary open angle glaucoma (POAG; GC-1 mice) and primary angle-closure glaucoma (PACG; Microbead Occlusion Model) - and measured RGC viability at both the soma and axon level. To determine the direct effect of increased cGMP on RGCs in vitro, we treated axotomized whole retina and primary RGC cultures with the cGMP analogue 8-Br-cGMP. Tadalafil treatment increased plasma cGMP levels in both models, but did not alter IOP or mean arterial pressure. Nonetheless, tadalafil treatment prevented degeneration of RGC soma and axons in both disease models. Treatment of whole, axotomized retina and primary RGC cultures with 8-Br-cGMP markedly attenuated both necrotic and apoptotic cell death pathways in RGCs. Our findings suggest that enhancement of the NO-GC-1-cGMP pathway protects the RGC body and axon in murine models of POAG and PACG, and that enhanced signaling through this pathway may serve as a novel glaucoma treatment, acting independently of IOP.
Jamshidi F, Place EM, Mehrotra S, Navarro-Gomez D, Maher M, Branham KE, Valkanas E, Cherry TJ, Lek M, MacArthur D, Pierce EA, Bujakowska KM. Contribution of noncoding pathogenic variants to RPGRIP1-mediated inherited retinal degeneration. Genet Med 2019;21(3):694-704.Abstract
PURPOSE: With the advent of gene therapies for inherited retinal degenerations (IRDs), genetic diagnostics will have an increasing role in clinical decision-making. Yet the genetic cause of disease cannot be identified using exon-based sequencing for a significant portion of patients. We hypothesized that noncoding pathogenic variants contribute significantly to the genetic causality of IRDs and evaluated patients with single coding pathogenic variants in RPGRIP1 to test this hypothesis. METHODS: IRD families underwent targeted panel sequencing. Unsolved cases were explored by exome and genome sequencing looking for additional pathogenic variants. Candidate pathogenic variants were then validated by Sanger sequencing, quantitative polymerase chain reaction, and in vitro splicing assays in two cell lines analyzed through amplicon sequencing. RESULTS: Among 1722 families, 3 had biallelic loss-of-function pathogenic variants in RPGRIP1 while 7 had a single disruptive coding pathogenic variants. Exome and genome sequencing revealed potential noncoding pathogenic variants in these 7 families. In 6, the noncoding pathogenic variants were shown to lead to loss of function in vitro. CONCLUSION: Noncoding pathogenic variants were identified in 6 of 7 families with single coding pathogenic variants in RPGRIP1. The results suggest that noncoding pathogenic variants contribute significantly to the genetic causality of IRDs and RPGRIP1-mediated IRDs are more common than previously thought.

Pages