Gene Therapy

Qazi Y, Hamrah P. Gene therapy in corneal transplantation. Semin Ophthalmol 2013;28(5-6):287-300.Abstract
Corneal transplantation is the most commonly performed organ transplantation. Immune privilege of the cornea is widely recognized, partly because of the relatively favorable outcome of corneal grafts. The first-time recipient of corneal allografts in an avascular, low-risk setting can expect a 90% success rate without systemic immunosuppressive agents and histocompatibility matching. However, immunologic rejection remains the major cause of graft failure, particularly in patients with a high risk for rejection. Corticosteroids remain the first-line therapy for the prevention and treatment of immune rejection. However, current pharmacological measures are limited in their side-effect profiles, repeated application, lack of targeted response, and short duration of action. Experimental ocular gene therapy may thus present new horizons in immunomodulation. From efficient viral vectors to sustainable alternative splicing, we discuss the progress of gene therapy in promoting graft survival and postulate further avenues for gene-mediated prevention of allogeneic graft rejection.
Mizeracka K, Trimarchi JM, Stadler MB, Cepko CL. Analysis of gene expression in wild-type and Notch1 mutant retinal cells by single cell profiling. Dev Dyn 2013;242(10):1147-59.Abstract
BACKGROUND: The vertebrate retina comprises sensory neurons, the photoreceptors, as well as many other types of neurons and one type of glial cell. These cells are generated by multipotent and restricted retinal progenitor cells (RPCs), which express Notch1. Loss of Notch1 in RPCs late during retinal development results in the overproduction of rod photoreceptors at the expense of interneurons and glia. RESULTS: To examine the molecular underpinnings of this observation, microarray analysis of single retinal cells from wild-type or Notch1 conditional knockout retinas was performed. In situ hybridization was carried out to validate some of the findings. CONCLUSIONS: The majority of Notch1-mutant cells lost expression of known Notch target genes. These cells also had low levels of RPC and cell cycle genes, and robustly up-regulated rod precursor genes. In addition, single wild-type cells, in which cell cycle marker genes were down-regulated, expressed markers of both rod photoreceptors and interneurons.
Qu J, Jakobs TC. The Time Course of Gene Expression during Reactive Gliosis in the Optic Nerve. PLoS One 2013;8(6):e67094.Abstract
Reactive gliosis is a complex process that involves changes in gene expression and morphological remodeling. The mouse optic nerve, where astrocytes, microglia and oligodendrocytes interact with retinal ganglion cell axons and each other, is a particularly suitable model for studying the molecular mechanisms of reactive gliosis. We triggered gliosis at the mouse optic nerve head by retro orbital nerve crush. We followed the expression profiles of 14,000 genes from 1 day to 3 months, as the optic nerve formed a glial scar. The transcriptome showed profound changes. These were greatest shortly after injury; the numbers of differentially regulated genes then dropped, returning nearly to resting levels by 3 months. Different genes were modulated with very different time courses, and functionally distinct groups of genes responded in partially overlapping waves. These correspond roughly to two quick waves of inflammation and cell proliferation, a slow wave of tissue remodeling and debris removal, and a final stationary phase that primarily reflects permanent structural changes in the axons. Responses from astrocytes, microglia and oligodendrocytes were distinctively different, both molecularly and morphologically. Comparisons to other models of brain injury and to glaucoma indicated that the glial responses depended on both the tissue and the injury. Attempts to modulate glial function after axonal injuries should consider different mechanistic targets at different times following the insult.
Lee HJ, Colby KA. A review of the clinical and genetic aspects of aniridia. Semin Ophthalmol 2013;28(5-6):306-12.Abstract
Aniridia classically presents with a bilateral congenital absence or malformation of the irides, foveal hypoplasia, and nystagmus, and patients tend to develop visually significant pre-senile cataracts and keratopathy. Additionally, they are at high risk for developing glaucoma. Classic aniridia can be genetically defined as the presence of a PAX6 gene deletion or loss-of-function mutation that results in haploinsufficiency. Variants of aniridia, which include a condition previously referred to as autosomal dominant keratitis, are likely due to PAX6 mutations that lead to partial loss of PAX6 function. Aniridia-associated keratopathy (AAK) is a progressive and potentially debilitating problem affecting aniridic patients. The current treatments for AAK are to replace the limbal stem cells through keratolimbal allograft (KLAL) with or without subsequent keratoplasty for visual rehabilitation, or to implant a Boston type 1 keratoprosthesis. Future therapies for AAK may be aimed at the genetic modification of corneal limbal stem cells.