Gene Therapy

von Alpen D, Tran HV, Guex N, Venturini G, Munier FL, Schorderet DF, Haider NB, Escher P. Differential Dimerization of Variants Linked to Enhanced S-Cone Sensitivity Syndrome (ESCS) Located in the NR2E3 Ligand-Binding Domain. Hum Mutat 2015;36(6):599-610.Abstract

NR2E3 encodes the photoreceptor-specific nuclear hormone receptor that acts as a repressor of cone-specific gene expression in rod photoreceptors, and as an activator of several rod-specific genes. Recessive variants located in the ligand-binding domain (LBD) of NR2E3 cause enhanced short wavelength sensitive- (S-) cone syndrome (ESCS), a retinal degeneration characterized by an excess of S-cones and non-functional rods. We analyzed the dimerization properties of NR2E3 and the effect of disease-causing LBD missense variants by bioluminescence resonance energy transfer (BRET(2) ) protein interaction assays. Homodimerization was not affected in presence of p.A256V, p.R039G, p.R311Q, and p.R334G variants, but abolished in presence of p.L263P, p.L336P, p.L353V, p.R385P, and p.M407K variants. Homology modeling predicted structural changes induced by NR2E3 LBD variants. NR2E3 LBD variants did not affect interaction with CRX, but with NRL and rev-erbα/NR1D1. CRX and NRL heterodimerized more efficiently together, than did either with NR2E3. NR2E3 did not heterodimerize with TLX/NR2E1 and RXRα/NR2C1. The identification of a new compound heterozygous patient with detectable rod function, who expressed solely the p.A256V variant protein, suggests a correlation between LBD variants able to form functional NR2E3 dimers and atypical mild forms of ESCS with residual rod function.

Carvalho LS, Vandenberghe LH. Promising and delivering gene therapies for vision loss. Vision Res 2015;111(Pt B):124-33.Abstract
The maturity in our understanding of the genetics and the pathogenesis of disease in degenerative retinal disorders has intersected in past years with a novel treatment paradigm in which a genetic intervention may lead to sustained therapeutic benefit, and in some cases even restoration of vision. Here, we review this prospect of retinal gene therapy, discuss the enabling technologies that have led to first-in-human demonstrations of efficacy and safety, and the road that led to this exciting point in time.
Heidary G, Calderwood L, Cox GF, Robson CD, Teot LA, Mullon J, Anselm I. Optic atrophy and a Leigh-like syndrome due to mutations in the c12orf65 gene: report of a novel mutation and review of the literature. J Neuroophthalmol 2014;34(1):39-43.Abstract
Combined oxidative phosphorylation deficiency type 7 (COXPD7) is a rare disorder of mitochondrial metabolism that results in optic atrophy and Leigh syndrome-like disease. We describe 2 siblings with compound heterozygous mutations in the recently identified C12orf65 gene who presented with optic atrophy and mild developmental delays and subsequently developed bilateral, symmetric lesions in the brainstem reminiscent of Leigh syndrome. Repeat neuroimaging demonstrated reversibility of the findings in 1 sibling and persistent metabolic stroke in the other. This article highlights the phenotypic manifestations from a novel mutation in the C12orf65 gene and reviews the clinical presentation of the 5 other individuals reported to date who carry mutations in this gene.
Hou Y, Lin H, Zhu L, Liu Z, Hu F, Shi J, Yang T, Shi X, Guo H, Tan X, Zhang L, Wang Q, Li Z, Zhao Y. The inhibitory effect of IFN-γ on protease HTRA1 expression in rheumatoid arthritis. J Immunol 2014;193(1):130-8.Abstract
The high temperature requirement A1 (HTRA1) is a potent protease involved in many diseases, including rheumatoid arthritis (RA). However, the regulatory mechanisms that control HTRA1 expression need to be determined. In this study, we demonstrated that IFN-γ significantly inhibited the basal and LPS-induced HTRA1 expression in fibroblasts and macrophages, which are two major cells for HTRA1 production in RA. Importantly, the inhibitory effect of IFN-γ on HTRA1 expression was evidenced in collagen-induced arthritis (CIA) mouse models and in human RA synovial cells. In parallel with the enhanced CIA incidence and pathological changes in IFN-γ-deficient mice, HTRA1 expression in the joint tissues was also increased as determined by real-time PCR and Western blots. IFN-γ deficiency increased the incidence of CIA and the pathological severity in mice. Neutralization of HTRA1 by Ab significantly reversed the enhanced CIA frequency and severity in IFN-γ-deficient mice. Mechanistically, IFN-γ negatively controls HTRA1 expression through activation of p38 MAPK/STAT1 pathway. Dual luciferase reporter assay and chromatin immunoprecipitation analysis showed that STAT1 could directly bind to HTRA1 promoter after IFN-γ stimulation. This study offers new insights into the molecular regulation of HTRA1 expression and its role in RA pathogenesis, which may have significant impact on clinical therapy for RA and possibly other HTRA1-related diseases, including osteoarthritis, age-related macular degeneration, and cancer.
Cruz NM, Yuan Y, Leehy BD, Baid R, Kompella U, Deangelis MM, Escher P, Haider NB. Modifier genes as therapeutics: the nuclear hormone receptor Rev Erb alpha (Nr1d1) rescues Nr2e3 associated retinal disease. PLoS One 2014;9(1):e87942.Abstract
Nuclear hormone receptors play a major role in many important biological processes. Most nuclear hormone receptors are ubiquitously expressed and regulate processes such as metabolism, circadian function, and development. They function in these processes to maintain homeostasis through modulation of transcriptional gene networks. In this study we evaluate the effectiveness of a nuclear hormone receptor gene to modulate retinal degeneration and restore the integrity of the retina. Currently, there are no effective treatment options for retinal degenerative diseases leading to progressive and irreversible blindness. In this study we demonstrate that the nuclear hormone receptor gene Nr1d1 (Rev-Erbα) rescues Nr2e3-associated retinal degeneration in the rd7 mouse, which lacks a functional Nr2e3 gene. Mutations in human NR2E3 are associated with several retinal degenerations including enhanced S cone syndrome and retinitis pigmentosa. The rd7 mouse, lacking Nr2e3, exhibits an increase in S cones and slow, progressive retinal degeneration. A traditional genetic mapping approach previously identified candidate modifier loci. Here, we demonstrate that in vivo delivery of the candidate modifier gene, Nr1d1 rescues Nr2e3 associated retinal degeneration. We observed clinical, histological, functional, and molecular restoration of the rd7 retina. Furthermore, we demonstrate that the mechanism of rescue at the molecular and functional level is through the re-regulation of key genes within the Nr2e3-directed transcriptional network. Together, these findings reveal the potency of nuclear receptors as modulators of disease and specifically of NR1D1 as a novel therapeutic for retinal degenerations.
Mizeracka K, Trimarchi JM, Stadler MB, Cepko CL. Analysis of gene expression in wild-type and Notch1 mutant retinal cells by single cell profiling. Dev Dyn 2013;242(10):1147-59.Abstract
BACKGROUND: The vertebrate retina comprises sensory neurons, the photoreceptors, as well as many other types of neurons and one type of glial cell. These cells are generated by multipotent and restricted retinal progenitor cells (RPCs), which express Notch1. Loss of Notch1 in RPCs late during retinal development results in the overproduction of rod photoreceptors at the expense of interneurons and glia. RESULTS: To examine the molecular underpinnings of this observation, microarray analysis of single retinal cells from wild-type or Notch1 conditional knockout retinas was performed. In situ hybridization was carried out to validate some of the findings. CONCLUSIONS: The majority of Notch1-mutant cells lost expression of known Notch target genes. These cells also had low levels of RPC and cell cycle genes, and robustly up-regulated rod precursor genes. In addition, single wild-type cells, in which cell cycle marker genes were down-regulated, expressed markers of both rod photoreceptors and interneurons.
Qu J, Jakobs TC. The Time Course of Gene Expression during Reactive Gliosis in the Optic Nerve. PLoS One 2013;8(6):e67094.Abstract
Reactive gliosis is a complex process that involves changes in gene expression and morphological remodeling. The mouse optic nerve, where astrocytes, microglia and oligodendrocytes interact with retinal ganglion cell axons and each other, is a particularly suitable model for studying the molecular mechanisms of reactive gliosis. We triggered gliosis at the mouse optic nerve head by retro orbital nerve crush. We followed the expression profiles of 14,000 genes from 1 day to 3 months, as the optic nerve formed a glial scar. The transcriptome showed profound changes. These were greatest shortly after injury; the numbers of differentially regulated genes then dropped, returning nearly to resting levels by 3 months. Different genes were modulated with very different time courses, and functionally distinct groups of genes responded in partially overlapping waves. These correspond roughly to two quick waves of inflammation and cell proliferation, a slow wave of tissue remodeling and debris removal, and a final stationary phase that primarily reflects permanent structural changes in the axons. Responses from astrocytes, microglia and oligodendrocytes were distinctively different, both molecularly and morphologically. Comparisons to other models of brain injury and to glaucoma indicated that the glial responses depended on both the tissue and the injury. Attempts to modulate glial function after axonal injuries should consider different mechanistic targets at different times following the insult.
Qazi Y, Hamrah P. Gene therapy in corneal transplantation. Semin Ophthalmol 2013;28(5-6):287-300.Abstract
Corneal transplantation is the most commonly performed organ transplantation. Immune privilege of the cornea is widely recognized, partly because of the relatively favorable outcome of corneal grafts. The first-time recipient of corneal allografts in an avascular, low-risk setting can expect a 90% success rate without systemic immunosuppressive agents and histocompatibility matching. However, immunologic rejection remains the major cause of graft failure, particularly in patients with a high risk for rejection. Corticosteroids remain the first-line therapy for the prevention and treatment of immune rejection. However, current pharmacological measures are limited in their side-effect profiles, repeated application, lack of targeted response, and short duration of action. Experimental ocular gene therapy may thus present new horizons in immunomodulation. From efficient viral vectors to sustainable alternative splicing, we discuss the progress of gene therapy in promoting graft survival and postulate further avenues for gene-mediated prevention of allogeneic graft rejection.
Lee HJ, Colby KA. A review of the clinical and genetic aspects of aniridia. Semin Ophthalmol 2013;28(5-6):306-12.Abstract
Aniridia classically presents with a bilateral congenital absence or malformation of the irides, foveal hypoplasia, and nystagmus, and patients tend to develop visually significant pre-senile cataracts and keratopathy. Additionally, they are at high risk for developing glaucoma. Classic aniridia can be genetically defined as the presence of a PAX6 gene deletion or loss-of-function mutation that results in haploinsufficiency. Variants of aniridia, which include a condition previously referred to as autosomal dominant keratitis, are likely due to PAX6 mutations that lead to partial loss of PAX6 function. Aniridia-associated keratopathy (AAK) is a progressive and potentially debilitating problem affecting aniridic patients. The current treatments for AAK are to replace the limbal stem cells through keratolimbal allograft (KLAL) with or without subsequent keratoplasty for visual rehabilitation, or to implant a Boston type 1 keratoprosthesis. Future therapies for AAK may be aimed at the genetic modification of corneal limbal stem cells.

Pages