April 2019

Silva RNE, Chiou CA, Wang M, Wang H, Shoji MK, Chou JC, D'Souza EE, Greenstein SH, Brauner SC, Alves MR, Pasquale LR, Shen LQ. Microvasculature of the Optic Nerve Head and Peripapillary Region in Patients With Primary Open-Angle Glaucoma. J Glaucoma 2019;28(4):281-288.Abstract
PURPOSE: To assess optic nerve head (ONH) and peripapillary microvasculature in primary open-angle glaucoma (POAG) of mild to moderate severity using swept-source optical coherence tomography angiography (OCTA). MATERIALS AND METHODS: In a cross-sectional study, swept-source OCTA images were analyzed for 1 eye from each of 30 POAG patients with glaucomatous Humphrey visual field loss and 16 controls. The anatomic boundary of ONH was manually delineated based on Bruch's membrane opening and large vessels were removed from en face angiography images to measure vessel density (VD) and the integrated OCTA by ratio analysis signal (IOS), suggestive of flow, in the ONH and peripapillary region. POAG subgroup analysis was performed based on a history of disc hemorrhage (DH) matched by visual field mean deviation (MD). RESULTS: POAG (mean MD±SD, -3.3±3.0 dB) and control groups had similar demographic characteristics and intraocular pressure on the day of imaging. Groups did not differ in superficial ONH VD or flow indicated by IOS (P≥0.28). POAG eyes showed significantly lower VD (39.4%±4.0%) and flow (38.8%±5.6%) in deep ONH, peripapillary VD (37.9%±2.9%) and flow (43.6%±4.0%) compared with control eyes (44.1%±5.1%, 44.7%±6.9%, 40.7%±1.7%, 47.8%±2.5%, respectively; P≤0.007 for all). In the subgroup analysis, POAG eyes with (n=14) and without DH (n=16) had similar measured OCTA parameters (P>0.99 for all). CONCLUSIONS: The image processing methodology based on the anatomic boundary of ONH demonstrated compromised microvasculature in the deep ONH and peripapillary region in eyes with mild to moderate POAG, regardless of the history of DH.
Goldstein JM, Tabebordbar M, Zhu K, Wang LD, Messemer KA, Peacker B, Ashrafi Kakhki S, Gonzalez-Celeiro M, Shwartz Y, Cheng JKW, Xiao R, Barungi T, Albright C, Hsu Y-C, Vandenberghe LH, Wagers AJ. In Situ Modification of Tissue Stem and Progenitor Cell Genomes. Cell Rep 2019;27(4):1254-1264.e7.Abstract
In vivo delivery of genome-modifying enzymes holds significant promise for therapeutic applications and functional genetic screening. Delivery to endogenous tissue stem cells, which provide an enduring source of cell replacement during homeostasis and regeneration, is of particular interest. Here, we use a sensitive Cre/lox fluorescent reporter system to test the efficiency of genome modification following in vivo transduction by adeno-associated viruses (AAVs) in tissue stem and progenitor cells. We combine immunophenotypic analyses with in vitro and in vivo assays of stem cell function to reveal effective targeting of skeletal muscle satellite cells, mesenchymal progenitors, hematopoietic stem cells, and dermal cell subsets using multiple AAV serotypes. Genome modification rates achieved through this system reached >60%, and modified cells retained key functional properties. This study establishes a powerful platform to genetically alter tissue progenitors within their physiological niche while preserving their native stem cell properties and regulatory interactions.
Barrett AM, Houston KE. Update on the Clinical Approach to Spatial Neglect. Curr Neurol Neurosci Rep 2019;19(5):25.Abstract
PURPOSE OF REVIEW: Spatial neglect is asymmetric orienting and action after a brain lesion, causing functional disability. It is common after a stroke; however, it is vastly underdocumented and undertreated. This article addresses the implementation gap in identifying and treating spatial neglect, to reduce disability and improve healthcare costs and burden. RECENT FINDINGS: Professional organizations published recommendations to implement spatial neglect care. Physicians can lead an interdisciplinary team: functionally relevant spatial neglect assessment, evidence-based spatial retraining, and integrated spatial and vision interventions can optimize outcomes. Research also strongly suggests spatial neglect adversely affects motor systems. Spatial neglect therapy might thus "kick-start" rehabilitation and improve paralysis recovery. Clinicians can implement new techniques to detect spatial neglect and lead interdisciplinary teams to promote better, integrated spatial neglect care. Future studies of brain imaging biomarkers to detect spatial neglect, and real-world applicability of prism adaptation treatment, are needed.
Maurer AC, Cepeda Diaz AK, Vandenberghe LH. Residues on Adeno-associated Virus Capsid Lumen Dictate Interactions and Compatibility with the Assembly-Activating Protein. J Virol 2019;93(7)Abstract
The adeno-associated virus (AAV) serves as a broadly used vector system for gene delivery. The process of AAV capsid assembly remains poorly understood. The viral cofactor assembly-activating protein (AAP) is required for maximum AAV production and has multiple roles in capsid assembly, namely, trafficking of the structural proteins (VP) to the nuclear site of assembly, promoting the stability of VP against multiple degradation pathways, and facilitating stable interactions between VP monomers. The N-terminal 60 amino acids of AAP (AAPN) are essential for these functions. Presumably, AAP must physically interact with VP to execute its multiple functions, but the molecular nature of the AAP-VP interaction is not well understood. Here, we query how structurally related AAVs functionally engage AAP from AAV serotype 2 (AAP2) toward virion assembly. These studies led to the identification of key residues on the lumenal capsid surface that are important for AAP-VP and for VP-VP interactions. Replacing a cluster of glutamic acid residues with a glutamine-rich motif on the conserved VP beta-barrel structure of variants incompatible with AAP2 creates a gain-of-function mutant compatible with AAP2. Conversely, mutating positively charged residues within the hydrophobic region of AAP2 and conserved core domains within AAPN creates a gain-of-function AAP2 mutant that rescues assembly of the incompatible variant. Our results suggest a model for capsid assembly where surface charge/neutrality dictates an interaction between AAPN and the lumenal VP surface to nucleate capsid assembly. Efforts to engineer the AAV capsid to gain desirable properties for gene therapy (e.g., tropism, reduced immunogenicity, and higher potency) require that capsid modifications do not affect particle assembly. The relationship between VP and the cofactor that facilitates its assembly, AAP, is central to both assembly preservation and vector production. Understanding the requirements for this compatibility can inform manufacturing strategies to maximize production and reduce costs. Additionally, library-based approaches that simultaneously examine a large number of capsid variants would benefit from a universally functional AAP, which could hedge against overlooking variants with potentially valuable phenotypes that were lost during vector library production due to incompatibility with the cognate AAP. Studying interactions between the structural and nonstructural components of AAV enhances our fundamental knowledge of capsid assembly mechanisms and the protein-protein interactions required for productive assembly of the icosahedral capsid.
Wolfe JM, Cain MS, Aizenman AM. Guidance and selection history in hybrid foraging visual search. Atten Percept Psychophys 2019;81(3):637-653.Abstract
In Hybrid Foraging tasks, observers search for multiple instances of several types of target. Collecting all the dirty laundry and kitchenware out of a child's room would be a real-world example. How are such foraging episodes structured? A series of four experiments shows that selection of one item from the display makes it more likely that the next item will be of the same type. This pattern holds if the targets are defined by basic features like color and shape but not if they are defined by their identity (e.g., the letters p & d). Additionally, switching between target types during search is expensive in time, with longer response times between successive selections if the target type changes than if they are the same. Finally, the decision to leave a screen/patch for the next screen in these foraging tasks is imperfectly consistent with the predictions of optimal foraging theory. The results of these hybrid foraging studies cast new light on the ways in which prior selection history guides subsequent visual search in general.
Bakshi SK, Paschalis EI, Graney J, Chodosh J. Lucia and Beyond: Development of an Affordable Keratoprosthesis. Cornea 2019;38(4):492-497.Abstract
PURPOSE: Severe corneal disease contributes significantly to the global burden of blindness. Corneal allograft surgery remains the most commonly used treatment, but does not succeed long term in every patient, and the odds of success fall with each repeated graft. The Boston keratoprosthesis type I has emerged as an alternative to repeat corneal allograft. However, cost limits its use in resource-poor settings, where most corneal blind individuals reside. METHODS: All aspects of the Boston keratoprosthesis design process were examined to determine areas of potential modification and simplification, with dual goals to reduce cost and improve the cosmetic appearance of the device in situ. RESULTS: Minor modifications in component design simplified keratoprosthesis manufacturing. Proportional machinist time could be further reduced by adopting a single axial length for aphakic eyes, and a single back plate diameter. The cosmetic appearance was improved by changing the shape of the back plate holes from round to radial, with a petaloid appearance, and by anodization of back plate titanium to impute a more natural color. CONCLUSIONS: We have developed a modified Boston keratoprosthesis type I, which we call the "Lucia." The Lucia retains the 2 piece design and ease of assembly of the predicate device, but would allow for manufacturing at a reduced cost. Its appearance should prove more acceptable to implanted patients. Successful keratoprosthesis outcomes require daily medications for the life of the patient and rigorous, frequent, postoperative care. Effective implementation of the device in resource-poor settings will require further innovations in eye care delivery.
Schoemaker D, Quiroz YT, Torrico-Teave H, Arboleda-Velasquez JF. Clinical and research applications of magnetic resonance imaging in the study of CADASIL. Neurosci Lett 2019;698:173-179.Abstract
Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is an inherited small vessel disease that leads to early cerebrovascular events and functional disability. It is the most common single-gene disorder leading to stroke. Magnetic resonance imaging (MRI) is a central component of the diagnosis and monitoring of CADASIL. Here we provide a descriptive review of the literature on three important aspects pertaining to the use of MRI in CADASIL. First, we review past research exploring MRI markers for this disease. Secondly, we describe results from studies investigating associations between neuroimaging abnormalities and neuropathology in CADASIL. Finally, we discuss previous findings relating MRI markers to clinical symptoms. This review thus provides a summary of the current state of knowledge regarding the use of MRI in CADASIL as well as suggestions for future research.
Wolkow N, Jakobiec FA, Afrogheh AH, Eagle RC, Pai SI, Faquin WC. Programmed Cell Death 1 Ligand 1 and Programmed Cell Death 1 Ligand 2 Are Expressed in Conjunctival Invasive Squamous Cell Carcinoma: Therapeutic Implications. Am J Ophthalmol 2019;200:226-241.Abstract
PURPOSE: Novel cancer immunotherapies, called immune checkpoint inhibitors, have demonstrated clinical efficacy in the treatment of squamous cell carcinomas of the head and neck. Tissue expression of programmed cell death 1 ligand 1 (PD-L1) and programmed cell death 1 ligand 2 (PD-L2) has been shown to predict tumor response to these drugs. We examine the expression of prognostic immune biomarkers, PD-L1 and PD-L2, in invasive ocular surface squamous neoplasia. DESIGN: Retrospective case series. METHODS: Eighteen cases of ocular surface or ocular adnexal invasive squamous cell carcinomas were identified in pathology case files of the Massachusetts General Hospital/Massachusetts Eye and Ear Infirmary and at the Wills Eye Hospital accessioned between January 1, 2014 and January 1, 2017. Immunohistochemical staining for PD-L1, PD-L2, CD8, and p16 was performed and graded in a standardized fashion. RESULTS: PD-L1 and PD-L2 were expressed on tumor cells to varying degrees, and also on some stromal cells and endothelial cells. Stromal and endothelial cell expression was also seen in control conjunctival specimens. Tumor expression of PD-L1 and PD-L2 was present on the cell membranes. All 18 (100%) of the tumors expressed PD-L1: 7 (39%) expressed a high level, 3 (17%) expressed a medium level, and 8 (44%) expressed a low level. Only 9 (50%) tumors expressed PD-L2 and it was at a low level. The expression of PD-L1 in tumor cells correlated with the presence of CD8-positive cytotoxic T lymphocytes among tumor cells (P < .01) and with the presence of CD8-positive cells in the surrounding stroma (P = .04). CONCLUSIONS: A subset of ocular invasive conjunctival squamous carcinomas express high levels of PD-L1 and CD8 and therefore may respond therapeutically to immune checkpoint inhibition.
Chi Z-L, Adini A, Birsner AE, Bazinet L, Akula JD, D'Amato RJ. PR1P ameliorates neurodegeneration through activation of VEGF signaling pathway and remodeling of the extracellular environment. Neuropharmacology 2019;148:96-106.Abstract
Neurodegenerative diseases affect millions of people worldwide. Optic neuropathies are the most commonly occurring neurodegenerative diseases, characterized by progressive retinal ganglion cell (RGC) degeneration. We recently reported that Prominin-1, a protein found on the surface of stem cells, interacts with VEGF and enhances its activity. VEGF is known to have various protective roles in the nervous system. Subsequently, we have developed a 12-mer peptide derived from Prominin-1, named PR1P, and investigated its effects on neuronal survival of damaged RGCs in a rat model of optic nerve crush (ONC). PR1P prevented RGC apoptosis resulting in improvement of retinal function in the rat ONC model. PR1P treatment significantly increased phosphorylation of ERK and AKT and expression its downstream proteins c-fos and Egr-1 in the retina. Additionally, PR1P beneficially increased the MMP-9/TIMP-1 ratio and promoted glial activation in the retina of ONC rats. Thus, PR1P displayed neuroprotective effects through enhanced VEGF-driven neuronal survival and reconstruction of the extracellular environment in ONC model. Our data indicate that PR1P may be a promising new clinical candidate for the treatment of neurodegenerative diseases.
Tiedemann D, Mouhammad ZA, Utheim TP, Dartt DA, Heegaard S, Petrovski G, Kolko M. Conjunctival Goblet Cells, the Overlooked Cells in Glaucoma Treatment. J Glaucoma 2019;28(4):325-333.Abstract
Glaucoma is the leading cause of irreversible blindness worldwide. Although no definitive cure exists, lowering of the intraocular pressure decreases the rate of progression in the majority of patients with glaucoma. Antiglaucomatous treatment modalities consist predominantly of chronic use of eye drops. It has become increasingly evident that long-term exposure to eye drops has a significant impact on the ocular surface, and thereby on patient compliance and quality of life. Maintenance of the ocular surface is highly dependent on a stable tear film. Conjunctival goblet cells (GCs) of the ocular surface play an important role in providing the innermost mucin layer of the tear film and are essential for maintaining the ocular surface homeostasis. Recent studies have reported severe side effects of antiglaucomatous drops on GCs. In particular, a preservative containing antiglaucomatous drops have been shown to affect the viability and functions of the GCs. Furthermore, GC density has been suggested as a potential predictor of surgical outcome after filtration surgery. The present review provides an overview of the current literature on the impact of antiglaucomatous eye drops on GCs as well as the impact on the ocular surface. Moreover, the existing evidence of a possible association between GC density and glaucoma filtration surgery outcome is summarized. We conclude that prostaglandin analogs spare the conjunctival GCs more compared with other antiglaucomatous drops and that GCs may be a good predictor of surgical outcome after filtration surgery. Overall, given the multiple functions of GCs in the ocular surface homeostasis, dedicated strategies should be adopted to preserve this cell population during the course of glaucoma.
Adil MY, Xiao J, Olafsson J, Chen X, Lagali NS, Ræder S, Utheim ØA, Dartt DA, Utheim TP. Meibomian Gland Morphology Is a Sensitive Early Indicator of Meibomian Gland Dysfunction. Am J Ophthalmol 2019;200:16-25.Abstract
PURPOSE: To investigate the relationship between meibomian gland (MG) morphology and clinical dry eye tests in patients with meibomian gland dysfunction (MGD). DESIGN: Cross-sectional study. SUBJECTS: Total 538 MGD patients and 21 healthy controls. METHODS: MG loss on meibography images of upper (UL) and lower lids (LL) was graded on a scale of 0 (lowest degree of MG loss) to 3. MG length, thickness, and interglandular space in the UL were measured. Clinical tests included meibum expression and quality, tear film break-up time, ocular staining, osmolarity, Schirmer I, blink interval timing, and Ocular Surface Disease Index (OSDI) questionnaire. RESULTS: Mean UL and LL meibogrades were significantly higher in MGD patients compared to controls (P < .001 for UL and LL). The sensitivity and specificity of the meibograde as a diagnostic parameter for MGD was 96.7% and 85%, respectively. Schirmer I was significantly increased in MGD patients with meibograde 1 compared to patients with meibograde 0, 2, and 3 in the UL (P < .05). MG thickness increased with higher meibograde (P < .001). MG morphology correlated significantly but weakly with several clinical parameters (P < .05). OSDI did not correlate with any MG morphologic parameter. CONCLUSIONS: Grading of MG loss using meibograde effectively diagnoses MGD. Compensatory mechanisms such as increased aqueous tear production and dilation of MGs make early detection of MGD difficult by standard clinical measures of dry eye, whereas morphologic analysis of MGs reveals an early stage of MGD, and therefore represents a complementary clinical parameter with diagnostic potential.
Lahola-Chomiak AA, Footz T, Nguyen-Phuoc K, Neil GJ, Fan BJ, Allen KF, Greenfield DS, Parrish RK, Linkroum K, Pasquale LR, Leonhardt RM, Ritch R, Javadiyan S, Craig JE, Allison WT, Lehmann OJ, Walter MA, Wiggs JL. Non-Synonymous variants in premelanosome protein (PMEL) cause ocular pigment dispersion and pigmentary glaucoma. Hum Mol Genet 2019;28(8):1298-1311.Abstract
Pigmentary glaucoma (PG) is a common glaucoma subtype that results from release of pigment from the iris, called pigment dispersion syndrome (PDS), and its deposition throughout the anterior chamber of the eye. Although PG has a substantial heritable component, no causative genes have yet been identified. We used whole exome sequencing of two independent pedigrees to identify two premelanosome protein (PMEL) variants associated with heritable PDS/PG. PMEL encodes a key component of the melanosome, the organelle essential for melanin synthesis, storage and transport. Targeted screening of PMEL in three independent cohorts (n = 394) identified seven additional PDS/PG-associated non-synonymous variants. Five of the nine variants exhibited defective processing of the PMEL protein. In addition, analysis of PDS/PG-associated PMEL variants expressed in HeLa cells revealed structural changes to pseudomelanosomes indicating altered amyloid fibril formation in five of the nine variants. Introduction of 11-base pair deletions to the homologous pmela in zebrafish by the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 method caused profound pigmentation defects and enlarged anterior segments in the eye, further supporting PMEL's role in ocular pigmentation and function. Taken together, these data support a model in which missense PMEL variants represent dominant negative mutations that impair the ability of PMEL to form functional amyloid fibrils. While PMEL mutations have previously been shown to cause pigmentation and ocular defects in animals, this research is the first report of mutations in PMEL causing human disease.
VanderVeen DK, Kraker RT, Pineles SL, Hutchinson AK, Wilson LB, Galvin JA, Lambert SR. Use of Orthokeratology for the Prevention of Myopic Progression in Children: A Report by the American Academy of Ophthalmology. Ophthalmology 2019;126(4):623-636.Abstract
PURPOSE: To review the published evidence to evaluate the ability of orthokeratology (Ortho-K) treatment to reduce myopic progression in children and adolescents compared with the use of spectacles or daytime contact lenses for standard refractive correction. METHODS: Literature searches of the PubMed database, the Cochrane Library, and the databases of clinical trials were last conducted on August 21, 2018, with no date restrictions but limited to articles published in English. These searches yielded 162 citations, of which 13 were deemed clinically relevant for full-text review and inclusion in this assessment. The panel methodologist then assigned a level of evidence rating to the selected studies. RESULTS: The 13 articles selected for inclusion include 3 prospective, randomized clinical trials; 7 nonrandomized, prospective comparative studies; and 3 retrospective case series. One study provided level I evidence, 11 studies provided level II evidence, and 1 study provided level III evidence. Most studies were performed in populations of Asian ethnicity. Change in axial length was the primary outcome for 10 of 13 studies and change in refraction was the primary outcome for 3 of 13 studies. In these studies, Ortho-K typically reduced axial elongation by approximately 50% over a 2-year study period. This corresponds to average axial length change values of approximately 0.3 mm for Ortho-K patients compared with 0.6 mm for control patients, which corresponds to a typical difference in refraction of approximately 0.5 diopters (D). Younger age groups and individuals with larger than average pupil size may have a greater effect with Ortho-K. Rebound can occur after discontinuation or change to alternative refractive treatment. CONCLUSIONS: Orthokeratology may be effective in slowing myopic progression for children and adolescents, with a potentially greater effect when initiated at an early age (6-8 years). Safety remains a concern because of the risk of potentially blinding microbial keratitis from contact lens wear.
Gupta A, El-Rami H, Barham R, Fleming A, van Hemert J, Sun JK, Silva PS, Aiello LP. Effect of phase-plate adjustment on retinal image sharpness and visible retinal area on ultrawide field imaging. Eye (Lond) 2019;33(4):587-591.Abstract
BACKGROUND: To evaluate changes in image sharpness across ultrawide field (UWF) images and the effect of phase-plate adjustment on image contrast and extent of visible retinal area (VRA). METHODS: This was a single site evaluation of 200° UWF images acquired with phase-plate adjustment (California, Optos, plc) and without (200TX, Optos, plc). Images were acquired using standardized protocol. VRA was manually outlined on each image and quantified using customized software. Mean image sharpness was evaluated using an automated method within the full VRA of each image and within the peripheral region of the VRA. The VRA and image sharpness were evaluated and compared between the two devices. RESULTS: Twenty eyes of 10 healthy volunteers were evaluated. Devices with and without phase-plate adjustment produced a similar extent of VRA. Eye steering increased VRA in devices with and without phase-plate adjustment by 39.3% and 34.3%, respectively. Regardless of gaze direction, mean sharpness of the full VRA was reduced in peripheral area with or without phase-plate adjustment. Compared to images without phase-plate adjustment, use of phase-plate adjustment reduced the loss of peripheral image sharpness in all fields (-4.2 to -26.0%; p < 0.001 all fields). The sharpness of the peripheral area for on-axis images was 61.5% higher with phase-plate adjustment. CONCLUSIONS: The use of phase-plate adjustment does not alter the extent of VRA. However, for on-axis images the loss of sharpness in the periphery is 4.5-fold less with phase-plate adjustment, potentially reducing the need to steer images and improving lesion detection in these areas.

Pages