August 2013

Yamaguchi T, Turhan A, Harris DL, Hu K, Prüss H, von Andrian U, Hamrah P. Bilateral nerve alterations in a unilateral experimental neurotrophic keratopathy model: a lateral conjunctival approach for trigeminal axotomy. PLoS One 2013;8(8):e70908.Abstract
To study bilateral nerve changes in a newly developed novel mouse model for neurotrophic keratopathy by approaching the trigeminal nerve from the lateral fornix. Surgical axotomy of the ciliary nerve of the trigeminal nerve was performed in adult BALB/c mice at the posterior sclera. Axotomized, contralateral, and sham-treated corneas were excised on post-operative days 1, 3, 5, 7 and 14 and immunofluorescence histochemistry was performed with anti-β-tubulin antibody to evaluate corneal nerve density. Blink reflex was evaluated using a nylon thread. The survival rate was 100% with minimal bleeding during axotomy and a surgical time of 8±0.5 minutes. The blink reflex was diminished at day 1 after axotomy, but remained intact in the contralateral eyes in all mice. The central and peripheral subbasal nerves were not detectable in the axotomized cornea at day 1 (p<0.001), compared to normal eyes (101.3±14.8 and 69.7±12.0 mm/mm² centrally and peripherally). Interestingly, the subbasal nerve density in the contralateral non-surgical eyes also decreased significantly to 62.4±2.8 mm/mm² in the center from day 1 (p<0.001), but did not change in the periphery (77.3±11.7 mm/mm², P = 0.819). Our novel trigeminal axotomy mouse model is highly effective, less invasive, rapid, and has a high survival rate, demonstrating immediate loss of subbasal nerves in axotomized eyes and decreased subbasal nerves in contralateral eyes after unilateral axotomy. This model will allow investigating the effects of corneal nerve damage and serves as a new model for neurotrophic keratopathy.
Wiggs JL, Howell GR, Linkroum K, Abdrabou W, Hodges E, Braine CE, Pasquale LR, Hannon GJ, Haines JL, John SWM. Variations in COL15A1 and COL18A1 influence age of onset of primary open angle glaucoma. Clin Genet 2013;84(2):167-74.Abstract
Primary open angle glaucoma (POAG) is a genetically and phenotypically complex disease that is a leading cause of blindness worldwide. Previously we completed a genome-wide scan for early-onset POAG that identified a locus on 9q22 (GLC1J). To identify potential causative variants underlying GLC1J, we used targeted DNA capture followed by high throughput sequencing of individuals from four GLC1J pedigrees, followed by Sanger sequencing to screen candidate variants in additional pedigrees. A mutation likely to cause early-onset glaucoma was not identified, however COL15A1 variants were found in the youngest affected members of 7 of 15 pedigrees with variable disease onset. In addition, the most common COL15A1 variant, R163H, influenced the age of onset in adult POAG cases. RNA in situ hybridization of mouse eyes shows that Col15a1 is expressed in the multiple ocular structures including ciliary body, astrocytes of the optic nerve and cells in the ganglion cell layer. Sanger sequencing of COL18A1, a related multiplexin collagen, identified a rare variant, A1381T, in members of three additional pedigrees with early-onset disease. These results suggest genetic variation in COL15A1 and COL18A1 can modify the age of onset of both early and late onset POAG.
Rose AM, Shah AZ, Alfano G, Bujakowska KM, Barker AF, Robertson LJ, Rahman S, Sánchez LV, Diaz-Corrales FJ, Chakarova CF, Krishna A, Bhattacharya SS. A Study into the Evolutionary Divergence of the Core Promoter Elements of PRPF31 and TFPT. J Mol Genet Med 2013;7(2)Abstract
Mutations in have been implicated in retinitis pigmentosa, a blinding disease caused by degeneration of rod photoreceptors. The disease mechanism in the majority of cases is haploinsufficiency. Crucially, attempts at generation of animal models of disease have proved unsuccessful, yielding animals with a visual phenotype that does not mirror human disease. This suggests that, in these animals, the transcriptional regulation of is different to humans and compared to other species. Study of the evolution of the core promoter has important implications for our understanding of human disease, as disease phenotype is modified by differentially expressed alleles in the population. lies in a head-to-head arrangement with , a gene involved in cellular apoptosis. The two genes were shown to share common regulatory elements in the human genome. In this study, the core promoters of and were characterised by dual-luciferase reporter assay using genomic DNA from the green monkey, domestic dog and house mouse. It was found that the core promoters were conserved between human and monkey. In dog, the core promoter was conserved, but different gene architecture meant the gene was controlled by a long-range promoter lying some 2000bp from the transcription start site. There was very low level of conservation (<20%) of the 5' region between mouse and human. It was shown that mouse populations did not show variable expression levels, revealing a potential explanation for the lack of phenotype observed in the knock-out mouse model.
Greiner JV. Long-term (12-month) improvement in meibomian gland function and reduced dry eye symptoms with a single thermal pulsation treatment. Clin Exp Ophthalmol 2013;41(6):524-30.Abstract
PURPOSE: To determine the 1-year post-treatment dry eye status of subjects with meibomian gland dysfunction and dry eye symptoms after receiving a single LipiFlow Thermal Pulsation System treatment. DESIGN: Single-centre, prospective, observational, open-label, 1-month-registered clinical trial with a 1-year follow-up examination. PARTICIPANTS: Patients with evaporative dry eye disease with meibomian gland dysfunction and dry eye symptoms who had participated in the registered 1-month clinical trial. METHODS: Eighteen of 30 subjects initially enrolled were able to return for a 1-year follow-up. Both eyes of all patients were treated with a single 12-min treatment using the LipiFlow Thermal Pulsation System. Meibomian gland function, tear break-up time and dry eye symptoms were measured. Data are presented for pretreatment (baseline), and 1-month and 1-year post-treatment. MAIN OUTCOME MEASURES: Meibomian gland secretion scores, and tear break-up time and dry eye symptoms. RESULTS: Significant improvement in meibomian gland secretion scores from baseline measurements (4.0 ± 3.4) to 1-month post-treatment (11.3 ± 4.7; P < 0.0005) was maintained at 1-year (7.3 ± 4.6; P < 0.05). Baseline tear break-up time (4.9 ± 3.0) was significantly increased at 1-month (9.5 ± 6.9; P < 0.05); however, this improvement was no longer evident at 1-year post-treatment (6.0 ± 4.4). The significant improvement in symptom scores on Ocular Surface Disease Index and Standard Patient Evaluation of Eye Dryness questionnaires observed at 1-month (P < 0.0005) was maintained at 1-year (Ocular Surface Disease Index [P < 0.05]; Standard Patient Evaluation of Eye Dryness [P < 0.0005]). CONCLUSION: A single 12-min treatment with the Lipi Flow Thermal Pulsation System offers an effective treatment for evaporative dry eye and meibomian gland dysfunction resulting in significant and sustained improvement in signs and symptoms for up to 1 year.
Lebreton F, van Schaik W, McGuire AM, Godfrey P, Griggs A, Mazumdar V, Corander J, Cheng L, Saif S, Young S, Zeng Q, Wortman J, Birren B, Willems RJL, Earl AM, Gilmore MS. Emergence of epidemic multidrug-resistant Enterococcus faecium from animal and commensal strains. MBio 2013;4(4)Abstract
UNLABELLED: Enterococcus faecium, natively a gut commensal organism, emerged as a leading cause of multidrug-resistant hospital-acquired infection in the 1980s. As the living record of its adaptation to changes in habitat, we sequenced the genomes of 51 strains, isolated from various ecological environments, to understand how E. faecium emerged as a leading hospital pathogen. Because of the scale and diversity of the sampled strains, we were able to resolve the lineage responsible for epidemic, multidrug-resistant human infection from other strains and to measure the evolutionary distances between groups. We found that the epidemic hospital-adapted lineage is rapidly evolving and emerged approximately 75 years ago, concomitant with the introduction of antibiotics, from a population that included the majority of animal strains, and not from human commensal lines. We further found that the lineage that included most strains of animal origin diverged from the main human commensal line approximately 3,000 years ago, a time that corresponds to increasing urbanization of humans, development of hygienic practices, and domestication of animals, which we speculate contributed to their ecological separation. Each bifurcation was accompanied by the acquisition of new metabolic capabilities and colonization traits on mobile elements and the loss of function and genome remodeling associated with mobile element insertion and movement. As a result, diversity within the species, in terms of sequence divergence as well as gene content, spans a range usually associated with speciation. IMPORTANCE: Enterococci, in particular vancomycin-resistant Enterococcus faecium, recently emerged as a leading cause of hospital-acquired infection worldwide. In this study, we examined genome sequence data to understand the bacterial adaptations that accompanied this transformation from microbes that existed for eons as members of host microbiota. We observed changes in the genomes that paralleled changes in human behavior. An initial bifurcation within the species appears to have occurred at a time that corresponds to the urbanization of humans and domestication of animals, and a more recent bifurcation parallels the introduction of antibiotics in medicine and agriculture. In response to the opportunity to fill niches associated with changes in human activity, a rapidly evolving lineage emerged, a lineage responsible for the vast majority of multidrug-resistant E. faecium infections.
Mauris J, Mantelli F, Woodward AM, Cao Z, Bertozzi CR, Panjwani N, Godula K, Argüeso P. Modulation of ocular surface glycocalyx barrier function by a galectin-3 N-terminal deletion mutant and membrane-anchored synthetic glycopolymers. PLoS One 2013;8(8):e72304.Abstract
BACKGROUND: Interaction of transmembrane mucins with the multivalent carbohydrate-binding protein galectin-3 is critical to maintaining the integrity of the ocular surface epithelial glycocalyx. This study aimed to determine whether disruption of galectin-3 multimerization and insertion of synthetic glycopolymers in the plasma membrane could be used to modulate glycocalyx barrier function in corneal epithelial cells. METHODOLOGY/PRINCIPAL FINDINGS: Abrogation of galectin-3 biosynthesis in multilayered cultures of human corneal epithelial cells using siRNA, and in galectin-3 null mice, resulted in significant loss of corneal barrier function, as indicated by increased permeability to the rose bengal diagnostic dye. Addition of β-lactose, a competitive carbohydrate inhibitor of galectin-3 binding activity, to the cell culture system, transiently disrupted barrier function. In these experiments, treatment with a dominant negative inhibitor of galectin-3 polymerization lacking the N-terminal domain, but not full-length galectin-3, prevented the recovery of barrier function to basal levels. As determined by fluorescence microscopy, both cellobiose- and lactose-containing glycopolymers incorporated into apical membranes of corneal epithelial cells, independently of the chain length distribution of the densely glycosylated, polymeric backbones. Membrane incorporation of cellobiose glycopolymers impaired barrier function in corneal epithelial cells, contrary to their lactose-containing counterparts, which bound to galectin-3 in pull-down assays. CONCLUSIONS/SIGNIFICANCE: These results indicate that galectin-3 multimerization and surface recognition of lactosyl residues is required to maintain glycocalyx barrier function at the ocular surface. Transient modification of galectin-3 binding could be therapeutically used to enhance the efficiency of topical drug delivery.
Jakobiec FA, Gragoudas ES, Colby KA. Biopsy of an anterior episcleral nodule as an aid in managing a ciliary body melanocytic tumor. Cornea 2013;32(8):1174-7.Abstract
PURPOSE: To demonstrate the value of a diagnostic biopsy of a fixed episcleral nodule overlying a uveal mass. METHOD: Clinicopathologic report with immunohistochemical investigations. RESULTS: B-scan ultrasonographic biomicroscopy disclosed in a 67-year-old man an asymptomatic placoid ciliary body tumor measuring 1.28 mm in thickness underlying a poorly pigmented, fixed episcleral nodule 0.56 mm in thickness. Biopsy of the episcleral nodule displayed benign nevus-type spindle cells with small nuclei, punctate nucleoli, no mitoses, and scattered melanophages. Immunohistochemistry demonstrated that the tumor cells were Ki67 negative (proliferation index, 0) and MART-1, HMB-45, and microphthalmia-associated transcription factor positive, all melanocytic markers. The melanophages but not the tumor cells were CD68 positive, a histiocytic marker. CONCLUSIONS: The results from biopsying an episcleral nodule can help to select among therapeutic options in managing an associated ciliary body tumor. A 1-year follow-up study and 3 sequential ultrasonographic studies in the current patient have failed to document the growth of the intraocular tumor, further confirming that it is a nevus. The excised epibulbar tumor has not recurred.
Li D, Shatos MA, Hodges RR, Dartt DA. Role of PKCα activation of Src, PI-3K/AKT, and ERK in EGF-stimulated proliferation of rat and human conjunctival goblet cells. Invest Ophthalmol Vis Sci 2013;54(8):5661-74.Abstract
PURPOSE: To determine the order and components of the signaling pathway utilized by epidermal growth factor (EGF) to stimulate conjunctival goblet cell proliferation. METHODS: Goblet cells from rat bulbar and forniceal conjunctiva and human bulbar conjunctiva were grown in organ culture. Goblet cells (GCs) were serum starved for 24 hours and preincubated with inhibitors for 30 minutes or small interfering RNA (siRNA) for 48 hours prior to addition of EGF. Proliferation was then measured or Western blot analysis was performed using antibodies against phosphorylated protein kinase B (AKT), extracellular signal-regulated kinase 1/2 (ERK1/2), or the non-receptor tyrosine kinase Src. Rat GCs were also incubated with adenoviruses expressing dominant negative protein kinase Cα (DNPKCα) or constitutively activated protein kinase Cα (myrPKCα), and activation of AKT and ERK1/2 was determined by Western blot analysis. RESULTS: Inhibitors of phosphoinositol-3 kinase (PI-3K)/AKT pathway blocked EGF-stimulated ERK1/2 activation and GC proliferation. Inhibitors of EGF-stimulated ERK1/2 activity did not inhibit AKT activation but blocked proliferation. DNPKCα blocked EGF-stimulated activation of AKT and ERK1/2 while myrPKCα increased activation of these kinases. Inhibitors of PI-3K, ERK1/2, and protein kinase C (PKC) blocked myrPKCα-stimulated GC proliferation. EGF and myrPKCα increased phosphorylation of Src, and inhibition of Src with the chemical inhibitor PP1 or siRNA inhibited EGF-stimulated GC proliferation. CONCLUSIONS: We found that EGF activates a major pathway to stimulate goblet cell proliferation. This pathway consists of induction of phospholipase C (PLC)γ to activate PKCα. Active PKCα phosphorylates Src to induce PI-3K to phosphorylate AKT that subsequently activates the ERK1/2 cascade to stimulate goblet cell proliferation.