August 2017

Mueller SK, Freitag SK, Lefebvre DR, Bleier BS. Endoscopic DCR using bipedicled interlacing mucosal flaps. Laryngoscope 2018;128(4):794-797.Abstract
OBJECTIVE: Obstruction of the nasolacrimal duct is a relatively common condition that affects patients of all ages, races, and sexes. The surgical gold standard for complete nasolacrimal duct obstruction and dacryocystitis is dacryocystorhinostomy (DCR). The purpose of this study was to describe a novel, bipedicled interlacing mucosal sparing flap technique for endoscopic DCR (eDCR). METHODS: A posteriorly based mucosal flap over the fundus is combined with a novel, anteriorly based mucosal flap over the intraosseus portion of the nasolacrimal duct (NLD). This exposes a wide area of the maxillary bone, allowing for exposure and identification of the NLD/sac complex in a safer, more inferior position. The interlacing mucosal flaps may be replaced at the conclusion of the procedure, thereby minimizing bone exposure and maintaining excellent long-term patency. RESULTS: The authors have utilized this technique in 55 procedures with 100% positive identification of the NLD and lacrimal sac, 0% complication rate, 100% anatomical patency rate, and 96.4% success rate after a minimal follow-up of 6 months. DISCUSSION: The bipedicled interlacing flap technique for eDCR provides for safe and reproducible identification of the NLD and lacrimal sac while minimizing bone exposure and restenosis rate. CONCLUSION: The bipedicled interlacing flap technique for eDCR provides for safe and reproducible identification of the NLD and lacrimal sac while minimizing bone exposure and restenosis rate. LEVEL OF EVIDENCE: NA. Laryngoscope, 128:794-797, 2018.
Jackson CJ, Reppe S, Eidet JR, Eide L, Tønseth KA, Bergersen LH, Dartt DA, Griffith M, Utheim TP. Optimization of Storage Temperature for Retention of Undifferentiated Cell Character of Cultured Human Epidermal Cell Sheets. Sci Rep 2017;7(1):8206.Abstract
Cultured epidermal cell sheets (CES) containing undifferentiated cells are useful for treating skin burns and have potential for regenerative treatment of other types of epithelial injuries. The undifferentiated phenotype is therefore important for success in both applications. This study aimed to optimize a method for one-week storage of CES for their widespread distribution and use in regenerative medicine. The effect of storage temperatures 4 °C, 8 °C, 12 °C, 16 °C, and 24 °C on CES was evaluated. Analyses included assessment of viability, mitochondrial reactive oxygen species (ROS), membrane damage, mitochondrial DNA (mtDNA) integrity, morphology, phenotype and cytokine secretion into storage buffer. Lowest cell viability was seen at 4 °C. Compared to non-stored cells, ABCG2 expression increased between temperatures 8-16 °C. At 24 °C, reduced ABCG2 expression coincided with increased mitochondrial ROS, as well as increased differentiation, cell death and mtDNA damage. P63, C/EBPδ, CK10 and involucrin fluorescence combined with morphology observations supported retention of undifferentiated cell phenotype at 12 °C, transition to differentiation at 16 °C, and increased differentiation at 24 °C. Several cytokines relevant to healing were upregulated during storage. Importantly, cells stored at 12 °C showed similar viability and undifferentiated phenotype as the non-stored control suggesting that this temperature may be ideal for storage of CES.
Au ED, Fernandez-Godino R, Kaczynksi TJ, Sousa ME, Farkas MH. Characterization of lincRNA expression in the human retinal pigment epithelium and differentiated induced pluripotent stem cells. PLoS One 2017;12(8):e0183939.Abstract
Long intervening non-coding RNAs (lincRNAs) are increasingly being implicated as important factors in many aspects of cellular development, function, and disease, but remain poorly understood. In this study, we examine the human retinal pigment epithelium (RPE) lincRNA transcriptome using RNA-Seq data generated from human fetal RPE (fRPE), RPE derived from human induced pluripotent stem cells (iPS-RPE), and undifferentiated iPS (iPS). In addition, we determine the suitability of iPS-RPE, from a transcriptome standpoint, as a model for use in future studies of lincRNA structure and function. A comparison of gene and isoform expression across the whole transcriptome shows only minimal differences between all sample types, though fRPE and iPS-RPE show higher concordance than either shows with iPS. Notably, RPE signature genes show the highest degree of fRPE to iPS-RPE concordance, indicating that iPS-RPE cells provide a suitable model for use in future studies. An analysis of lincRNAs demonstrates high concordance between fRPE and iPS-RPE, but low concordance between either RPE and iPS. While most lincRNAs are expressed at low levels (RPKM < 10), there is a high degree of concordance among replicates within each sample type, suggesting the expression is consistent, even at levels subject to high variability. Finally, we identified and annotated 180 putative novel genes in the fRPE samples, a majority of which are also expressed in the iPS-RPE. Overall, this study represents the first characterization of lincRNA expression in the human RPE, and provides a model for studying the role lincRNAs play in RPE development, function, and disease.
Olivares AM, Althoff K, Chen GF, Wu S, Morrisson MA, Deangelis MM, Haider N. Animal Models of Diabetic Retinopathy. Curr Diab Rep 2017;17(10):93.Abstract
PURPOSE OF REVIEW: Diabetic retinopathy (DR) is one of the most common complications associated with chronic hyperglycemia seen in patients with diabetes mellitus. While many facets of DR are still not fully understood, animal studies have contributed significantly to understanding the etiology and progression of human DR. This review provides a comprehensive discussion of the induced and genetic DR models in different species and the advantages and disadvantages of each model. RECENT FINDINGS: Rodents are the most commonly used models, though dogs develop the most similar morphological retinal lesions as those seen in humans, and pigs and zebrafish have similar vasculature and retinal structures to humans. Nonhuman primates can also develop diabetes mellitus spontaneously or have focal lesions induced to simulate retinal neovascular disease observed in individuals with DR. DR results in vascular changes and dysfunction of the neural, glial, and pancreatic β cells. Currently, no model completely recapitulates the full pathophysiology of neuronal and vascular changes that occur at each stage of diabetic retinopathy; however, each model recapitulates many of the disease phenotypes.
Srivastava S, Gubbels CS, Dies K, Fulton A, Yu T, Sahin M. Increased Survival and Partly Preserved Cognition in a Patient With ACO2-Related Disease Secondary to a Novel Variant. J Child Neurol 2017;32(9):840-845.Abstract
ACO2 encodes aconitase 2, catalyzing the second step of the tricarboxylic acid. To date, there are only 6 reported families with 5 unique ACO2 mutations. Affected individuals can develop intellectual disability, epilepsy, brain atrophy, hypotonia, ataxia, optic atrophy, and retinal degeneration. Here, we report an 18-year-old boy with a novel ACO2 variant discovered on whole-exome sequencing. He presented with childhood-onset ataxia, impaired self-help skills comparable to severe-profound intellectual disability, intractable epilepsy, cerebellar atrophy, peripheral neuropathy, optic atrophy, and pigmentary retinopathy. His variant is the sixth unique ACO2 mutation. In addition, compared to mild cases (isolated optic atrophy) and severe cases (infantile death), our patient may be moderately affected, evident by increased survival and some preserved cognition (ability to speak full sentences and follow commands), which is a novel presentation. This case expands the disease spectrum to include increased survival with partly spared cognition.
Silva PS, Gupta A, Ajlan RS, Schlossman DK, Tolson AM, Cavallerano JD, Aiello LP. Ultrawide field scanning laser ophthalmoscopy imaging of lipemia retinalis. Acta Ophthalmol 2017;Abstract
OBJECTIVE: To describe the characteristic retinal features of lipemia retinalis when using ultrawide field scanning laser ophthalmoscopy. MAIN POINTS: We report a case series of three subjects with ultrawide field retinal images showing cream discoloration of the fundus, light salmon-coloured posterior retinal vessels and greyish pink peripheral vasculature. On green-only imaging, many of the vessels appear light rather than typically dark. CONCLUSION: Lipemia retinalis is readily apparent on ultrawide field imaging and illustrates the alterations that systemic diseases may induce in the posterior and peripheral retinal vasculature. Ultrawide field imaging highlights the disparate vascular appearance of the posterior pole and retinal periphery in this condition.
Wang L, Xiao R, Andres-Mateos E, Vandenberghe LH. Single stranded adeno-associated virus achieves efficient gene transfer to anterior segment in the mouse eye. PLoS One 2017;12(8):e0182473.Abstract
Adeno-associated viruses (AAVs) are used extensively as a gene delivery vehicle for retinal gene therapy, yet its ability to target the anterior segment of the eye, critical to unlocking therapeutic opportunities, is less characterized. Previously, self-complimentary (sc) AAV was shown to be necessary for transduction of the cornea and trabecular meshwork (TM), limiting the size of the gene transfer cassette, likely due to a block in second strand synthesis thought to be required for functional transduction. Here, we evaluated several AAV capsids in a single stranded (ss) genome conformation for their ability to overcome the need for scAAV for targeting corneal endothelium and TM. AAV2, 8, and a recently synthetically developed AAV called Anc80L65 were evaluated in vitro and in vivo by intracameral injection in mice. Results show that although scAAV2 demonstrated superior infectivity in vitro including Human Trabecular meshwork (HTM) immortalized cell lines; Anc80L65 transduced following a single intracameral injection efficiently all components of the mouse anterior segment, including the TM, corneal stroma, and endothelial cells. These results suggest that Anc80L65 is able to overcome the requirement for scAAV genomes to enable TM and corneal targeting, expanding the potential experimental and therapeutic use of AAV gene transfer in the anterior segment of the eye.
Fu Z, Liegl R, Wang Z, Gong Y, Liu C-H, Sun Y, Cakir B, Burnim SB, Meng SS, Löfqvist C, SanGiovanni JP, Hellström A, Smith LEH. Adiponectin Mediates Dietary Omega-3 Long-Chain Polyunsaturated Fatty Acid Protection Against Choroidal Neovascularization in Mice. Invest Ophthalmol Vis Sci 2017;58(10):3862-3870.Abstract
Purpose: Neovascular age-related macular degeneration (AMD) is a major cause of legal blindness in the elderly. Diets with omega3-long-chain-polyunsaturated-fatty-acid (ω3-LCPUFA) correlate with a decreased risk of AMD. Dietary ω3-LCPUFA versus ω6-LCPUFA inhibits mouse ocular neovascularization, but the underlying mechanism needs further exploration. The aim of this study was to investigate if adiponectin (APN) mediated ω3-LCPUFA suppression of neovessels in AMD. Methods: The mouse laser-induced choroidal neovascularization (CNV) model was used to mimic some of the inflammatory aspect of AMD. CNV was compared between wild-type (WT) and Apn-/- mice fed either otherwise matched diets with 2% ω3 or 2% ω6-LCPUFAs. Vldlr-/- mice were used to mimic some of the metabolic aspects of AMD. Choroid assay ex vivo and human retinal microvascular endothelial cell (HRMEC) proliferation assay in vitro was used to investigate the APN pathway in angiogenesis. Western blot for p-AMPKα/AMPKα and qPCR for Apn, Mmps, and IL-10 were used to define mechanism. Results: ω3-LCPUFA intake suppressed laser-induced CNV in WT mice; suppression was abolished with APN deficiency. ω3-LCPUFA, mediated by APN, decreased mouse Mmps expression. APN deficiency decreased AMPKα phosphorylation in vivo and exacerbated choroid-sprouting ex vivo. APN pathway activation inhibited HRMEC proliferation and decreased Mmps. In Vldlr-/- mice, ω3-LCPUFA increased retinal AdipoR1 and inhibited NV. ω3-LCPUFA decreased IL-10 but did not affect Mmps in Vldlr-/- retinas. Conclusions: APN in part mediated ω3-LCPUFA inhibition of neovascularization in two mouse models of AMD. Modulating the APN pathway in conjunction with a ω3-LCPUFA-enriched-diet may augment the beneficial effects of ω3-LCPUFA in AMD patients.
Maleki A, Swan RT, Lasave AF, Ma L, Foster SC. Reply. Ophthalmology 2017;124(8):e64-e65.
Al-Moujahed A, Brodowska K, Stryjewski TP, Efstathiou NE, Vasilikos I, Cichy J, Miller JW, Gragoudas E, Vavvas DG. Verteporfin inhibits growth of human glioma in vitro without light activation. Sci Rep 2017;7(1):7602.Abstract
Verteporfin (VP), a light-activated drug used in photodynamic therapy for the treatment of choroidal neovascular membranes, has also been shown to be an effective inhibitor of malignant cells. Recently, studies have demonstrated that, even without photo-activation, VP may still inhibit certain tumor cell lines, including ovarian cancer, hepatocarcinoma and retinoblastoma, through the inhibition of the YAP-TEAD complex. In this study, we examined the effects of VP without light activation on human glioma cell lines (LN229 and SNB19). Through western blot analysis, we identified that human glioma cells that were exposed to VP without light activation demonstrated a downregulation of YAP-TEAD-associated downstream signaling molecules, including c-myc, axl, CTGF, cyr61 and survivin and upregulation of the tumor growth inhibitor molecule p38 MAPK. In addition, we observed that expression of VEGFA and the pluripotent marker Oct-4 were also decreased. Verteporfin did not alter the Akt survival pathway or the mTor pathway but there was a modest increase in LC3-IIB, a marker of autophagosome biogenesis. This study suggests that verteporfin should be further explored as an adjuvant therapy for the treatment of glioblastoma.
Amarnani D, Machuca-Parra AI, Wong LL, Marko CK, Stefater JA, Stryjewski TP, Eliott D, Arboleda-Velasquez JF, Kim LA. Effect of Methotrexate on an In Vitro Patient-Derived Model of Proliferative Vitreoretinopathy. Invest Ophthalmol Vis Sci 2017;58(10):3940-3949.Abstract
Purpose: The purpose of this study was to develop a method for isolating, culturing, and characterizing cells from patient-derived membranes in proliferative vitreoretinopathy (PVR) to be used for drug testing. Methods: PVR membranes were obtained from six patients with grade C PVR. Membrane fragments were analyzed by gross evaluation, fixed for immunohistologic studies to establish cell identity, or digested with collagenase II to obtain single cell suspensions for culture. PVR-derived primary cultures were used to examine the effects of methotrexate (MTX) on proliferation, migration, and cell death. Results: Gross analysis of PVR membranes showed presence of pigmented cells, indicative of retinal pigment epithelial cells. Immunohistochemistry identified cells expressing α-smooth muscle actin, glial fibrillary acidic protein, Bestrophin-1, and F4/80, suggesting the presence of multiple cell types in PVR. Robust PVR primary cultures (C-PVR) were successfully obtained from human membranes, and these cells retained the expression of cell identity markers in culture. C-PVR cultures formed membranes and band-like structures in culture reminiscent of the human condition. MTX significantly reduced the proliferation and band formation of C-PVR, whereas it had no significant effect on cell migration. MTX also induced regulated cell death within C-PVR as assessed by increased expression of caspase-3/7. Conclusions: PVR cells obtained from human membranes can be successfully isolated, cultured, and profiled in vitro. Using these primary cultures, we identified MTX as capable of significantly reducing growth and inducing cell death of PVR cells in vitro.
Peli E, Jung J-H. Multiplexing Prisms for Field Expansion. Optom Vis Sci 2017;94(8):817-829.Abstract
PURPOSE: Prisms used for field expansion are limited by the optical scotoma at a prism apex (apical scotoma). For a patient with two functioning eyes, fitting prisms unilaterally allows the other eye to compensate for the apical scotoma. A monocular patient's field loss cannot be expanded with a conventional or Fresnel prism because of the apical scotoma. A newly invented optical device, the multiplexing prism (MxP), was developed to overcome the apical scotoma limitation in monocular field expansion. METHODS: A Fresnel-prism-like device with alternating prism and flat elements superimposes shifted and see-through views, thus creating the (monocular) visual confusion required for field expansion and eliminating the apical scotoma. Several implementations are demonstrated and preliminarily evaluated for different monocular conditions with visual field loss. The field expansion of the MxP is compared with the effect of conventional prisms using calculated and measured perimetry. RESULTS: Field expansion without apical scotomas is shown to be effective for monocular patients with hemianopia or constricted peripheral field. The MxPs are shown to increase the nasal field for a patient with only one eye and for patients with bitemporal hemianopia. The MxPs placed at the far temporal field are shown to expand the normal visual field. The ability to control the contrast ratio between the two images is verified. CONCLUSIONS: A novel optical device is demonstrated to have the potential for field expansion technology in a variety of conditions. The devices may be inexpensive and can be constructed in a cosmetically acceptable format.
Machuca-Parra AI, Bigger-Allen AA, Sanchez AV, Boutabla A, Cardona-Vélez J, Amarnani D, Saint-Geniez M, Siebel CW, Kim LA, D'Amore PA, Arboleda-Velasquez JF. Therapeutic antibody targeting of Notch3 signaling prevents mural cell loss in CADASIL. J Exp Med 2017;214(8):2271-2282.Abstract
Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a neurological syndrome characterized by small vessel disease (SVD), stroke, and vascular cognitive impairment and dementia caused by mutations in NOTCH3 No therapies are available for this condition. Loss of mural cells, which encompass pericytes and vascular smooth muscle cells, is a hallmark of CADASIL and other SVDs, including diabetic retinopathy, resulting in vascular instability. Here, we showed that Notch3 signaling is both necessary and sufficient to support mural cell coverage in arteries using genetic rescue in Notch3 knockout mice. Furthermore, we show that systemic administration of an agonist Notch3 antibody prevents mural cell loss and modifies plasma proteins associated with Notch3 activity, including endostatin/collagen 18α1 and Notch3 extracellular domain in mice with the C455R mutation, a CADASIL variant associated with Notch3 loss of function. These findings open opportunities for the treatment of CADASIL and other SVDs by modulating Notch3 signaling.
Wu W, Tang L, D'Amore PA, Lei H. Application of CRISPR-Cas9 in eye disease. Exp Eye Res 2017;161:116-123.Abstract
The system of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated nuclease (Cas)9 is an effective instrument for revising the genome with great accuracy. This system has been widely employed to generate mutants in genomes from plants to human cells. Rapid improvements in Cas9 specificity in eukaryotic cells have opened great potential for the use of this technology as a therapeutic. Herein, we summarize the recent advancements of CRISPR-Cas9 use in research on human cells and animal models, and outline a basic and clinical pipeline for CRISPR-Cas9-based treatments of genetic eye diseases.

Pages