Gene Therapy

A
Aleman TS, Huckfeldt RM, Serrano LW, Pearson DJ, Vergilio GK, McCague S, Marshall KA, Ashtari M, Doan TM, Weigel-DiFranco CA, Biron BS, Wen X-H, Chung DC, Liu E, Ferenchak K, Morgan JIW, Pierce EA, Eliott D, Bennett J, Comander J, Maguire AM. Adeno-Associated Virus Serotype 2-hCHM Subretinal Delivery to the Macula in Choroideremia: Two-Year Interim Results of an Ongoing Phase I/II Gene Therapy Trial. Ophthalmology 2022;129(10):1177-1191.Abstract
PURPOSE: To assess the safety of the subretinal delivery of a recombinant adeno-associated virus serotype 2 (AAV2) vector carrying a human choroideremia (CHM)-encoding cDNA in CHM. DESIGN: Prospective, open-label, nonrandomized, dose-escalation, phase I/II clinical trial. PARTICIPANTS: Fifteen CHM patients (ages 20-57 years at dosing). METHODS: Patients received uniocular subfoveal injections of low-dose (up to 5 × 1010 vector genome [vg] per eye, n = 5) or high-dose (up to 1 × 1011 vg per eye, n = 10) of a recombinant adeno-associated virus serotype 2 (AAV2) vector carrying a human CHM-encoding cDNA (AAV2-hCHM). Patients were evaluated preoperatively and postoperatively for 2 years with ophthalmic examinations, multimodal retinal imaging, and psychophysical testing. MAIN OUTCOME MEASURES: Visual acuity, perimetry (10-2 protocol), spectral-domain OCT (SD-OCT), and short-wavelength fundus autofluorescence (SW-FAF). RESULTS: We detected no vector-related or systemic toxicities. Visual acuity returned to within 15 letters of baseline in all but 2 patients (1 developed acute foveal thinning, and 1 developed a macular hole); the rest showed no gross changes in foveal structure at 2 years. There were no significant differences between intervention and control eyes in mean light-adapted sensitivity by perimetry or in the lateral extent of retinal pigment epithelium relative preservation by SD-OCT and SW-FAF. Microperimetry showed nonsignificant (< 3 standard deviations of the intervisit variability) gains in sensitivity in some locations and participants in the intervention eye. There were no obvious dose-dependent relationships. CONCLUSIONS: Visual acuity was within 15 letters of baseline after the subfoveal AAV2-hCHM injections in 13 of 15 patients. Acute foveal thinning with unchanged perifoveal function in 1 patient and macular hole in 1 patient suggest foveal vulnerability to the subretinal injections. Longer observation intervals will help establish the significance of the minor differences in sensitivities and rate of disease progression observed between intervention and control eyes.
von Alpen D, Tran HV, Guex N, Venturini G, Munier FL, Schorderet DF, Haider NB, Escher P. Differential Dimerization of Variants Linked to Enhanced S-Cone Sensitivity Syndrome (ESCS) Located in the NR2E3 Ligand-Binding Domain. Hum Mutat 2015;36(6):599-610.Abstract

NR2E3 encodes the photoreceptor-specific nuclear hormone receptor that acts as a repressor of cone-specific gene expression in rod photoreceptors, and as an activator of several rod-specific genes. Recessive variants located in the ligand-binding domain (LBD) of NR2E3 cause enhanced short wavelength sensitive- (S-) cone syndrome (ESCS), a retinal degeneration characterized by an excess of S-cones and non-functional rods. We analyzed the dimerization properties of NR2E3 and the effect of disease-causing LBD missense variants by bioluminescence resonance energy transfer (BRET(2) ) protein interaction assays. Homodimerization was not affected in presence of p.A256V, p.R039G, p.R311Q, and p.R334G variants, but abolished in presence of p.L263P, p.L336P, p.L353V, p.R385P, and p.M407K variants. Homology modeling predicted structural changes induced by NR2E3 LBD variants. NR2E3 LBD variants did not affect interaction with CRX, but with NRL and rev-erbα/NR1D1. CRX and NRL heterodimerized more efficiently together, than did either with NR2E3. NR2E3 did not heterodimerize with TLX/NR2E1 and RXRα/NR2C1. The identification of a new compound heterozygous patient with detectable rod function, who expressed solely the p.A256V variant protein, suggests a correlation between LBD variants able to form functional NR2E3 dimers and atypical mild forms of ESCS with residual rod function.

Amamoto R, Zuccaro E, Curry NC, Khurana S, Chen H-H, Cepko CL, Arlotta P. FIN-Seq: transcriptional profiling of specific cell types from frozen archived tissue of the human central nervous system. Nucleic Acids Res 2020;48(1):e4.Abstract
Thousands of frozen, archived tissue samples from the human central nervous system (CNS) are currently available in brain banks. As recent developments in RNA sequencing technologies are beginning to elucidate the cellular diversity present within the human CNS, it is becoming clear that an understanding of this diversity would greatly benefit from deeper transcriptional analyses. Single cell and single nucleus RNA profiling provide one avenue to decipher this heterogeneity. An alternative, complementary approach is to profile isolated, pre-defined cell types and use methods that can be applied to many archived human tissue samples that have been stored long-term. Here, we developed FIN-Seq (Frozen Immunolabeled Nuclei Sequencing), a method that accomplishes these goals. FIN-Seq uses immunohistochemical isolation of nuclei of specific cell types from frozen human tissue, followed by bulk RNA-Sequencing. We applied this method to frozen postmortem samples of human cerebral cortex and retina and were able to identify transcripts, including low abundance transcripts, in specific cell types.
Andres-Mateos E, Landegger LD, Unzu C, Phillips J, Lin BM, Dewyer NA, Sanmiguel J, Nicolaou F, Valero MD, Bourdeu KI, Sewell WF, Beiler RJ, McKenna MJ, Stankovic KM, Vandenberghe LH. Choice of vector and surgical approach enables efficient cochlear gene transfer in nonhuman primate. Nat Commun 2022;13(1):1359.Abstract
Inner ear gene therapy using adeno-associated viral vectors (AAV) promises to alleviate hearing and balance disorders. We previously established the benefits of Anc80L65 in targeting inner and outer hair cells in newborn mice. To accelerate translation to humans, we now report the feasibility and efficiency of the surgical approach and vector delivery in a nonhuman primate model. Five rhesus macaques were injected with AAV1 or Anc80L65 expressing eGFP using a transmastoid posterior tympanotomy approach to access the round window membrane after making a small fenestra in the oval window. The procedure was well tolerated. All but one animal showed cochlear eGFP expression 7-14 days following injection. Anc80L65 in 2 animals transduced up to 90% of apical inner hair cells; AAV1 was markedly less efficient at equal dose. Transduction for both vectors declined from apex to base. These data motivate future translational studies to evaluate gene therapy for human hearing disorders.
Arboleda-Velasquez JF, Lopera F, O'Hare M, Delgado-Tirado S, Marino C, Chmielewska N, Saez-Torres KL, Amarnani D, Schultz AP, Sperling RA, Leyton-Cifuentes D, Chen K, Baena A, Aguillon D, Rios-Romenets S, Giraldo M, Guzmán-Vélez E, Norton DJ, Pardilla-Delgado E, Artola A, Sanchez JS, Acosta-Uribe J, Lalli M, Kosik KS, Huentelman MJ, Zetterberg H, Blennow K, Reiman RA, Luo J, Chen Y, Thiyyagura P, Su Y, Jun GR, Naymik M, Gai X, Bootwalla M, Ji J, Shen L, Miller JB, Kim LA, Tariot PN, Johnson KA, Reiman EM, Quiroz YT. Resistance to autosomal dominant Alzheimer's disease in an APOE3 Christchurch homozygote: a case report. Nat Med 2019;25(11):1680-1683.Abstract
We identified a PSEN1 (presenilin 1) mutation carrier from the world's largest autosomal dominant Alzheimer's disease kindred, who did not develop mild cognitive impairment until her seventies, three decades after the expected age of clinical onset. The individual had two copies of the APOE3 Christchurch (R136S) mutation, unusually high brain amyloid levels and limited tau and neurodegenerative measurements. Our findings have implications for the role of APOE in the pathogenesis, treatment and prevention of Alzheimer's disease.
Arendt D, Musser JM, Baker CVH, Bergman A, Cepko C, Erwin DH, Pavlicev M, Schlosser G, Widder S, Laubichler MD, Wagner GP. The origin and evolution of cell types. Nat Rev Genet 2016;17(12):744-757.Abstract

Cell types are the basic building blocks of multicellular organisms and are extensively diversified in animals. Despite recent advances in characterizing cell types, classification schemes remain ambiguous. We propose an evolutionary definition of a cell type that allows cell types to be delineated and compared within and between species. Key to cell type identity are evolutionary changes in the 'core regulatory complex' (CoRC) of transcription factors, that make emergent sister cell types distinct, enable their independent evolution and regulate cell type-specific traits termed apomeres. We discuss the distinction between developmental and evolutionary lineages, and present a roadmap for future research.

Ashraf S, Deshpande N, Vasanth S, Melangath G, Wong RJ, Zhao Y, Price MO, Price FW, Jurkunas UV. Dysregulation of DNA repair genes in Fuchs endothelial corneal dystrophy. Exp Eye Res 2023;231:109499.Abstract
Fuchs Endothelial Corneal Dystrophy (FECD), a late-onset oxidative stress disorder, is the most common cause of corneal endothelial degeneration and is genetically associated with CTG repeat expansion in Transcription Factor 4 (TCF4). We previously reported accumulation of nuclear (nDNA) and mitochondrial (mtDNA) damage in FECD. Specifically, mtDNA damage was a prominent finding in development of disease in the ultraviolet-A (UVA) induced FECD mouse model. We hypothesize that an aberrant DNA repair may contribute to the increased DNA damage seen in FECD. We analyzed differential expression profiles of 84 DNA repair genes by real-time PCR arrays using Human DNA Repair RT-Profiler plates using cDNA extracted from Descemet's membrane-corneal endothelium (DM-CE) obtained from FECD patients with expanded (>40) or non-expanded (<40) intronic CTG repeats in TCF4 gene and from age-matched normal donors. Change in mRNA expression of <0.5- or >2.0-fold in FECD relative to normal was set as cutoff for down- or upregulation. Downregulated mitochondrial genes were further validated using the UVA-based mouse model of FECD. FECD specimens exhibited downregulation of 9 genes and upregulation of 8 genes belonging to the four major DNA repair pathways, namely, base excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR), and double strand break (DSB) repair, compared to normal donors. MMR gene MSH2 and BER gene POLB were preferentially upregulated in expanded FECD. BER genes LIG3 and NEIL2, DSB repair genes PARP3 and TOP3A, NER gene XPC, and unclassified pathway gene TREX1, were downregulated in both expanded and non-expanded FECD. MtDNA repair genes, Lig3, Neil2, and Top3a, were also downregulated in the UVA-based mouse model of FECD. Our findings identify impaired DNA repair pathways that may play an important role in DNA damage due to oxidative stress as well as genetic predisposition noted in FECD.
B
Ballios BG, Pierce EA, Huckfeldt RM. Gene editing technology: Towards precision medicine in inherited retinal diseases. Semin Ophthalmol 2021;36(4):176-184.Abstract
Purpose: To review preclinical and clinical advances in gene therapy, with a focus on gene editing technologies, and application to inherited retinal disease.Methods: A narrative overview of the literature, summarizing the state-of-the-art in clinical gene therapy for inherited retinal disease, as well as the science and application of new gene editing technology.Results: The last three years has seen the first FDA approval of an in vivo gene replacement therapy for a hereditary blinding eye disease and, recently, the first clinical application of an in vivo gene editing technique. Limitations and challenges in this evolving field are highlighted, as well as new technologies developed to address the multitude of molecular mechanisms of disease.Conclusion: Genetic therapy for the treatment of inherited retinal disease is a rapidly expanding area of ophthalmology. New technologies have revolutionized the field of genome engineering and rekindled an interest in precision medicines for these conditions.
Banskota S, Raguram A, Suh S, Du SW, Davis JR, Choi EH, Wang X, Nielsen SC, Newby GA, Randolph PB, Osborn MJ, Musunuru K, Palczewski K, Liu DR. Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins. Cell 2022;185(2):250-265.e16.Abstract
Methods to deliver gene editing agents in vivo as ribonucleoproteins could offer safety advantages over nucleic acid delivery approaches. We report the development and application of engineered DNA-free virus-like particles (eVLPs) that efficiently package and deliver base editor or Cas9 ribonucleoproteins. By engineering VLPs to overcome cargo packaging, release, and localization bottlenecks, we developed fourth-generation eVLPs that mediate efficient base editing in several primary mouse and human cell types. Using different glycoproteins in eVLPs alters their cellular tropism. Single injections of eVLPs into mice support therapeutic levels of base editing in multiple tissues, reducing serum Pcsk9 levels 78% following 63% liver editing, and partially restoring visual function in a mouse model of genetic blindness. In vitro and in vivo off-target editing from eVLPs was virtually undetected, an improvement over AAV or plasmid delivery. These results establish eVLPs as promising vehicles for therapeutic macromolecule delivery that combine key advantages of both viral and nonviral delivery.
Beier KT, Mundell NA, Pan AY, Cepko CL. Anterograde or Retrograde Transsynaptic Circuit Tracing in Vertebrates with Vesicular Stomatitis Virus Vectors. Curr Protoc Neurosci 2016;74:1.26.1-1.26.27.Abstract

Viruses have been used as transsynaptic tracers, allowing one to map the inputs and outputs of neuronal populations, due to their ability to replicate in neurons and transmit in vivo only across synaptically connected cells. To date, their use has been largely restricted to mammals. In order to explore the use of such viruses in an expanded host range, we tested the transsynaptic tracing ability of recombinant vesicular stomatitis virus (rVSV) vectors in a variety of organisms. Successful infection and gene expression were achieved in a wide range of organisms, including vertebrate and invertebrate model organisms. Moreover, rVSV enabled transsynaptic tracing of neural circuitry in predictable directions dictated by the viral envelope glycoprotein (G), derived from either VSV or rabies virus (RABV). Anterograde and retrograde labeling, from initial infection and/or viral replication and transmission, was observed in Old and New World monkeys, seahorses, jellyfish, zebrafish, chickens, and mice. These vectors are widely applicable for gene delivery, afferent tract tracing, and/or directional connectivity mapping. Here, we detail the use of these vectors and provide protocols for propagating virus, changing the surface glycoprotein, and infecting multiple organisms using several injection strategies. © 2016 by John Wiley & Sons, Inc.

Berry JL, Polski A, Cavenee WK, Dryja TP, Murphree LA, Gallie BL. The Story: Characterization and Cloning of the First Tumor Suppressor Gene. Genes (Basel) 2019;10(11)Abstract
The gene is the first described human tumor suppressor gene and plays an integral role in the development of retinoblastoma, a pediatric malignancy of the eye. Since its discovery, the stepwise characterization and cloning of have laid the foundation for numerous advances in the understanding of tumor suppressor genes, retinoblastoma tumorigenesis, and inheritance. Knowledge of led to a paradigm shift in the field of cancer genetics, including widespread acceptance of the concept of tumor suppressor genes, and has provided crucial diagnostic and prognostic information through genetic testing for patients affected by retinoblastoma. This article reviews the long history of gene research, characterization, and cloning, and also discusses recent advances in retinoblastoma genetics that have grown out of this foundational work.
Bujakowska KM, Comander J. Moving Towards PDE6A Gene Supplementation Therapy. JAMA Ophthalmol 2020;
C
Carelli V, Newman NJ, Yu-Wai-Man P, Biousse V, Moster ML, Subramanian PS, Vignal-Clermont C, Wang A-G, Donahue SP, Leroy BP, Sergott RC, Klopstock T, Sadun AA, Fernández GR, Chwalisz BK, Banik R, Girmens JF, La Morgia C, DeBusk AA, Jurkute N, Priglinger C, Karanjia R, Josse C, Salzmann J, Montestruc F, Roux M, Taiel M, Sahel J-A, the LHON Group S. Indirect Comparison of Lenadogene Nolparvovec Gene Therapy Versus Natural History in Patients with Leber Hereditary Optic Neuropathy Carrying the m.11778G>A MT-ND4 Mutation. Ophthalmol Ther 2023;12(1):401-429.Abstract
INTRODUCTION: Lenadogene nolparvovec is a promising novel gene therapy for patients with Leber hereditary optic neuropathy (LHON) carrying the m.11778G>A ND4 mutation (MT-ND4). A previous pooled analysis of phase 3 studies showed an improvement in visual acuity of patients injected with lenadogene nolparvovec compared to natural history. Here, we report updated results by incorporating data from the latest phase 3 trial REFLECT in the pool, increasing the number of treated patients from 76 to 174. METHODS: The visual acuity of 174 MT-ND4-carrying patients with LHON injected in one or both eyes with lenadogene nolparvovec from four pooled phase 3 studies (REVERSE, RESCUE and their long-term extension trial RESTORE; and REFLECT trial) was compared to the spontaneous evolution of an external control group of 208 matched patients from 11 natural history studies. RESULTS: Treated patients showed a clinically relevant and sustained improvement in their visual acuity when compared to natural history. Mean improvement versus natural history was - 0.30 logMAR (+ 15 ETDRS letters equivalent) at last observation (P < 0.01) with a maximal follow-up of 3.9 years after injection. Most treated eyes were on-chart as compared to less than half of natural history eyes at 48 months after vision loss (89.6% versus 48.1%; P < 0.01) and at last observation (76.1% versus 44.4%; P < 0.01). When we adjusted for covariates of interest (gender, age of onset, ethnicity, and duration of follow-up), the estimated mean gain was - 0.43 logMAR (+ 21.5 ETDRS letters equivalent) versus natural history at last observation (P < 0.0001). Treatment effect was consistent across all phase 3 clinical trials. Analyses from REFLECT suggest a larger treatment effect in patients receiving bilateral injection compared to unilateral injection. CONCLUSION: The efficacy of lenadogene nolparvovec in improving visual acuity in MT-ND4 LHON was confirmed in a large cohort of patients, compared to the spontaneous natural history decline. Bilateral injection of gene therapy may offer added benefits over unilateral injection. TRIAL REGISTRATION NUMBERS: NCT02652780 (REVERSE); NCT02652767 (RESCUE); NCT03406104 (RESTORE); NCT03293524 (REFLECT); NCT03295071 (REALITY).
Carvalho LS, Vandenberghe LH. Promising and delivering gene therapies for vision loss. Vision Res 2015;111(Pt B):124-33.Abstract
The maturity in our understanding of the genetics and the pathogenesis of disease in degenerative retinal disorders has intersected in past years with a novel treatment paradigm in which a genetic intervention may lead to sustained therapeutic benefit, and in some cases even restoration of vision. Here, we review this prospect of retinal gene therapy, discuss the enabling technologies that have led to first-in-human demonstrations of efficacy and safety, and the road that led to this exciting point in time.
Carvalho LS, Xiao R, Wassmer SJ, Langsdorf A, Zinn E, Pacouret S, Shah S, Comander JI, Kim LA, Lim L, Vandenberghe LH. Synthetic Adeno-Associated Viral Vector Efficiently Targets Mouse and Nonhuman Primate Retina In Vivo. Hum Gene Ther 2018;29(7):771-784.Abstract
Gene therapy is a promising approach in the treatment of inherited and common complex disorders of the retina. Preclinical and clinical studies have validated the use of adeno-associated viral vectors (AAV) as a safe and efficient delivery vehicle for gene transfer. Retinal pigment epithelium and rods-and to a lesser extent, cone photoreceptors-can be efficiently targeted with AAV. Other retinal cell types however are more challenging targets. The aim of this study was to characterize the transduction profile and efficiency of in silico designed, synthetic Anc80 AAVs for retinal gene transfer. Three Anc80 variants were evaluated for retinal targeting in mice and primates following subretinal delivery. In the murine retina Anc80L65 demonstrated high level of retinal pigment epithelium and photoreceptor targeting with comparable cone photoreceptor affinity compared to other AAVs. Remarkably, Anc80L65 enhanced transduction kinetics with visible expression as early as day 1 and steady state mRNA levels at day 3. Inner retinal tropism of Anc80 variants demonstrated distinct transduction patterns of Müller glia, retinal ganglion cells and inner nuclear layer neurons. Finally, murine findings with Anc80L65 qualitatively translated to the Rhesus macaque in terms of cell targets, levels and onset of expression. Our findings support the use of Anc80L65 for therapeutic subretinal gene delivery.
Cepko CL, Vandenberghe LH. Retinal gene therapy coming of age. Hum Gene Ther 2013;24(3):242-4.
Cepko CL. Emerging gene therapies for retinal degenerations. J Neurosci 2012;32(19):6415-20.
Cepko C, Punzo C. Cell metabolism: Sugar for sight. Nature 2015;522(7557):428-9.
Chan YK, Wang SK, Chu CJ, Copland DA, Letizia AJ, Costa Verdera H, Chiang JJ, Sethi M, Wang MK, Neidermyer WJ, Chan Y, Lim ET, Graveline AR, Sanchez M, Boyd RF, Vihtelic TS, Inciong RGCO, Slain JM, Alphonse PJ, Xue Y, Robinson-McCarthy LR, Tam JM, Jabbar MH, Sahu B, Adeniran JF, Muhuri M, Tai PWL, Xie J, Krause TB, Vernet A, Pezone M, Xiao R, Liu T, Wang W, Kaplan HJ, Gao G, Dick AD, Mingozzi F, McCall MA, Cepko CL, Church GM. Engineering adeno-associated viral vectors to evade innate immune and inflammatory responses. Sci Transl Med 2021;13(580)Abstract
Nucleic acids are used in many therapeutic modalities, including gene therapy, but their ability to trigger host immune responses in vivo can lead to decreased safety and efficacy. In the case of adeno-associated viral (AAV) vectors, studies have shown that the genome of the vector activates Toll-like receptor 9 (TLR9), a pattern recognition receptor that senses foreign DNA. Here, we engineered AAV vectors to be intrinsically less immunogenic by incorporating short DNA oligonucleotides that antagonize TLR9 activation directly into the vector genome. The engineered vectors elicited markedly reduced innate immune and T cell responses and enhanced gene expression in clinically relevant mouse and pig models across different tissues, including liver, muscle, and retina. Subretinal administration of higher-dose AAV in pigs resulted in photoreceptor pathology with microglia and T cell infiltration. These adverse findings were avoided in the contralateral eyes of the same animals that were injected with the engineered vectors. However, intravitreal injection of higher-dose AAV in macaques, a more immunogenic route of administration, showed that the engineered vector delayed but did not prevent clinical uveitis, suggesting that other immune factors in addition to TLR9 may contribute to intraocular inflammation in this model. Our results demonstrate that linking specific immunomodulatory noncoding sequences to much longer therapeutic nucleic acids can "cloak" the vector from inducing unwanted immune responses in multiple, but not all, models. This "coupled immunomodulation" strategy may widen the therapeutic window for AAV therapies as well as other DNA-based gene transfer methods.
Choi VW, Bigelow CE, McGee TL, Gujar AN, Li H, Hanks SM, Vrouvlianis J, Maker M, Leehy B, Zhang Y, Aranda J, Bounoutas G, Demirs JT, Yang J, Ornberg R, Wang Y, Martin W, Stout KR, Argentieri G, Grosenstein P, Diaz D, Turner O, Jaffee BD, Police SR, Dryja TP. AAV-mediated RLBP1 gene therapy improves the rate of dark adaptation in Rlbp1 knockout mice. Mol Ther Methods Clin Dev 2015;2:15022.Abstract

Recessive mutations in RLBP1 cause a form of retinitis pigmentosa in which the retina, before its degeneration leads to blindness, abnormally slowly recovers sensitivity after exposure to light. To develop a potential gene therapy for this condition, we tested multiple recombinant adeno-associated vectors (rAAVs) composed of different promoters, capsid serotypes, and genome conformations. We generated rAAVs in which sequences from the promoters of the human RLBP1, RPE65, or BEST1 genes drove the expression of a reporter gene (green fluorescent protein). A promoter derived from the RLBP1 gene mediated expression in the retinal pigment epithelium and Müller cells (the intended target cell types) at qualitatively higher levels than in other retinal cell types in wild-type mice and monkeys. With this promoter upstream of the coding sequence of the human RLBP1 gene, we compared the potencies of vectors with an AAV2 versus an AAV8 capsid in transducing mouse retinas, and we compared vectors with a self-complementary versus a single-stranded genome. The optimal vector (scAAV8-pRLBP1-hRLBP1) had serotype 8 capsid and a self-complementary genome. Subretinal injection of scAAV8-pRLBP1-hRLBP1 in Rlbp1 nullizygous mice improved the rate of dark adaptation based on scotopic (rod-plus-cone) and photopic (cone) electroretinograms (ERGs). The effect was still present after 1 year.

Pages