Neural dynamics underlying target detection in the human brain

Citation:

Bansal AK, Madhavan R, Agam Y, Golby A, Madsen JR, Kreiman G. Neural dynamics underlying target detection in the human brain. J Neurosci 2014;34(8):3042-55.

Date Published:

2014 Feb 19

Abstract:

Sensory signals must be interpreted in the context of goals and tasks. To detect a target in an image, the brain compares input signals and goals to elicit the correct behavior. We examined how target detection modulates visual recognition signals by recording intracranial field potential responses from 776 electrodes in 10 epileptic human subjects. We observed reliable differences in the physiological responses to stimuli when a cued target was present versus absent. Goal-related modulation was particularly strong in the inferior temporal and fusiform gyri, two areas important for object recognition. Target modulation started after 250 ms post stimulus, considerably after the onset of visual recognition signals. While broadband signals exhibited increased or decreased power, gamma frequency power showed predominantly increases during target presence. These observations support models where task goals interact with sensory inputs via top-down signals that influence the highest echelons of visual processing after the onset of selective responses.

Last updated on 11/12/2018