Neurovisual profile in children affected by Angelman syndrome

Citation:

Galli J, Loi E, Strobio C, Micheletti S, Martelli P, Merabet LB, Pasini N, Semeraro F, Fazzi E, Fazzi E. Neurovisual profile in children affected by Angelman syndrome. Brain Dev 2022;

Date Published:

2022 Nov 04

Abstract:

BACKGROUND: Angelman syndrome (AS) is a rare neurogenetic disorder caused by altered expression of the maternal copy of the UBE3A gene. Together with motor, cognitive, and speech impairment, ophthalmological findings including strabismus, and ocular fundus hypopigmentation characterize the clinical phenotype. The aim of this study was to detail the neurovisual profile of children affected by AS and to explore any possible genotype-phenotype correlations. METHODS: Thirty-seven children (23 females, mean age 102.8 ± 54.4 months, age range 22 to 251 months) with molecular confirmed diagnosis of AS were enrolled in the study. All underwent a comprehensive video-recorded neurovisual evaluation including the assessment of ophthalmological aspects, oculomotor functions, and basic visual abilities. RESULTS: All children had visual impairments mainly characterized by refractive errors, ocular fundus changes, strabismus, discontinuous/jerky smooth pursuit and altered saccadic movements, and/or reduced visual acuity. Comparing the neurovisual profiles between the deletion and non-deletion genetic subgroups, we found a significant statistical correlation between genotype and ocular fundus hypopigmentation (p = 0.03), discontinuous smooth pursuit (p < 0.05), and contrast sensitivity abnormalities (p < 0.01) being more frequent in the deletion subgroup. CONCLUSIONS: Subjects affected by AS present a wide spectrum of neurovisual impairments that lead to a clinical profile consistent with cerebral visual impairment (CVI). Moreover, subjects with a chromosome deletion show a more severe visual phenotype with respect to ocular fundus changes, smooth pursuit movements, and contrast sensitivity. Early detection of these impaired visual functions may help promote the introduction of neurovisual habilitative programs which can improve children's visual, neuromotor, and cognitive outcomes.

Last updated on 11/29/2022