August 2014

S
Sanderson J, Dartt DA, Trinkaus-Randall V, Pintor J, Civan MM, Delamere NA, Fletcher EL, Salt TE, Grosche A, Mitchell CH. Purines in the eye: recent evidence for the physiological and pathological role of purines in the RPE, retinal neurons, astrocytes, Müller cells, lens, trabecular meshwork, cornea and lacrimal gland. Exp Eye Res 2014;127:270-9.Abstract
This review highlights recent findings that describ how purines modulate the physiological and pathophysiological responses of ocular tissues. For example, in lacrimal glands the cross-talk between P2X7 receptors and both M3 muscarinic receptors and α1D-adrenergic receptors can influence tear secretion. In the cornea, purines lead to post-translational modification of EGFR and structural proteins that participate in wound repair in the epithelium and influence the expression of matrix proteins in the stroma. Purines act at receptors on both the trabecular meshwork and ciliary epithelium to modulate intraocular pressure (IOP); ATP-release pathways of inflow and outflow cells differ, possibly permitting differential modulation of adenosine delivery. Modulators of trabecular meshwork cell ATP release include cell volume, stretch, extracellular Ca(2+) concentration, oxidation state, actin remodeling and possibly endogenous cardiotonic steroids. In the lens, osmotic stress leads to ATP release following TRPV4 activation upstream of hemichannel opening. In the anterior eye, diadenosine polyphosphates such as Ap4A act at P2 receptors to modulate the rate and composition of tear secretion, impact corneal wound healing and lower IOP. The Gq11-coupled P2Y1-receptor contributes to volume control in Müller cells and thus the retina. P2X receptors are expressed in neurons in the inner and outer retina and contribute to visual processing as well as the demise of retinal ganglion cells. In RPE cells, the balance between extracellular ATP and adenosine may modulate lysosomal pH and the rate of lipofuscin formation. In optic nerve head astrocytes, mechanosensitive ATP release via pannexin hemichannels, coupled with stretch-dependent upregulation of pannexins, provides a mechanism for ATP signaling in chronic glaucoma. With so many receptors linked to divergent functions throughout the eye, ensuring the transmitters remain local and stimulation is restricted to the intended target may be a key issue in understanding how physiological signaling becomes pathological in ocular disease.
Santa Maria JP, Sadaka A, Moussa SH, Brown S, Zhang YJ, Rubin EJ, Gilmore MS, Walker S. Compound-gene interaction mapping reveals distinct roles for Staphylococcus aureus teichoic acids. Proc Natl Acad Sci U S A 2014;111(34):12510-5.Abstract
Staphylococcus aureus contains two distinct teichoic acid (TA) polymers, lipoteichoic acid (LTA) and wall teichoic acid (WTA), which are proposed to play redundant roles in regulating cell division. To gain insight into the underlying biology of S. aureus TAs, we used a small molecule inhibitor to screen a highly saturated transposon library for cellular factors that become essential when WTA is depleted. We constructed an interaction network connecting WTAs with genes involved in LTA synthesis, peptidoglycan synthesis, surface protein display, and D-alanine cell envelope modifications. Although LTAs and WTAs are synthetically lethal, we report that they do not have the same synthetic interactions with other cell envelope genes. For example, D-alanylation, a tailoring modification of both WTAs and LTAs, becomes essential when the former, but not the latter, are removed. Therefore, D-alanine-tailored LTAs are required for survival when WTAs are absent. Examination of terminal phenotoypes led to the unexpected discovery that cells lacking both LTAs and WTAs lose their ability to form Z rings and can no longer divide. We have concluded that the presence of either LTAs or WTAs on the cell surface is required for initiation of S. aureus cell division, but these polymers act as part of distinct cellular networks.
Shah AS, Prabhu SP, Sadiq MAA, Mantagos IS, Hunter DG, Dagi LR. Adjustable nasal transposition of split lateral rectus muscle for third nerve palsy. JAMA Ophthalmol 2014;132(8):963-9.Abstract
IMPORTANCE: Third nerve palsy causes disfiguring, incomitant strabismus with limited options for correction. OBJECTIVE: To evaluate the oculomotor outcomes, anatomical changes, and complications associated with adjustable nasal transposition of the split lateral rectus (LR) muscle, a novel technique for managing strabismus associated with third nerve palsy. DESIGN, SETTING, AND PARTICIPANTS: Retrospective medical record review appraising outcomes of 6 consecutive patients with third nerve palsy who underwent adjustable nasal transposition of the split LR muscle between 2010 and 2012 with follow-up of 5 to 25 months at a tertiary referral center. INTERVENTION: Adjustable nasal transposition of the split LR muscle. MAIN OUTCOMES AND MEASURES: The primary outcome was postoperative horizontal and vertical alignment. Secondary outcomes were (1) appraising the utility of adjustable positioning, (2) demonstrating the resultant anatomical changes using magnetic resonance imaging, and (3) identifying associated complications. RESULTS: Four of 6 patients successfully underwent the procedure. Of these, 3 patients achieved orthotropia. Median preoperative horizontal deviation was 68 prism diopters of exotropia and median postoperative horizontal deviation was 0 prism diopters (P = .04). Two patients had preoperative vertical misalignment that resolved with surgery. All 4 patients underwent intraoperative adjustment of LR positioning. Imaging demonstrated nasal redirection of each half of the LR muscle around the posterior globe, avoiding contact with the optic nerve; the apex of the split sat posterior to the globe. One patient had transient choroidal effusion and undercorrection. Imaging revealed, in this case, the apex of the split in contact with the globe at an anterolateral location, suggesting an inadequate posterior extent of the split. In 2 patients, the surgical procedure was not completed because of an inability to nasally transpose a previously operated-on LR muscle. CONCLUSIONS AND RELEVANCE: Adjustable nasal transposition of the split LR muscle can achieve excellent oculomotor alignment in some cases of third nerve palsy. The adjustable modification allows optimization of horizontal and vertical alignment. Imaging confirms that the split LR muscle tethers the globe, rotating it toward primary position. Case selection is critical because severe LR contracture, extensive scarring from prior strabismus surgery, or inadequate splitting of the LR muscle may reduce the likelihood of success and increase the risk of sight-threatening complications. Considering this uncertainty, more experience is necessary before widespread adoption of this technique should be considered.
Sheldon S, Quint J, Hecht H, Bowers AR. The effect of central vision loss on perception of mutual gaze. Optom Vis Sci 2014;91(8):1000-11.Abstract
PURPOSE: To evaluate the effects of central vision loss (CVL) on mutual gaze perception (knowing whether somebody else is looking at you), an important nonverbal visual cue in social interactions. METHODS: Twenty-three persons with CVL (visual acuity 20/50 to 20/200), 16 with a bilateral central scotoma and 7 without, and 23 age-matched control subjects completed a gaze perception task and a brief questionnaire. They adjusted the eyes of a life-size virtual head on a monitor at a 1-m distance until they either appeared to be looking straight at them or were at the extreme left/right or up/down positions at which the eyes still appeared to be looking toward them (defining the range of mutual gaze in the horizontal and vertical planes). RESULTS: The nonscotoma group did not differ from the control subjects in any gaze task measure. However, the gaze direction judgments of the scotoma group had significantly greater variability than those of the nonscotoma and control groups (p < 0.001). In addition, their mutual gaze range tended to be wider (p = 0.15), suggesting a more liberal judgment criterion. Contrast sensitivity was the strongest predictor of variability in gaze direction judgments followed by self-reported difficulties. CONCLUSIONS: Our results suggest that mutual gaze perception is relatively robust to CVL. However, a follow-up study that simulates less-than-optimal viewing conditions of everyday social interactions is needed. The gaze perception task holds promise as a research tool for investigating the effects of vision impairment on mutual gaze judgments. Self-reported difficulty and contrast sensitivity were both independent predictors of gaze perception performance, suggesting that the task captured higher-order as well as low-level visual abilities.
Sriram S, Gibson DJ, Robinson P, Pi L, Tuli S, Lewin AS, Schultz G. Assessment of anti-scarring therapies in ex vivo organ cultured rabbit corneas. Exp Eye Res 2014;125:173-82.Abstract
The effects of a triple combination of siRNAs targeting key scarring genes were assessed using an ex vivo organ culture model of excimer ablated rabbit corneas. The central 6 mm diameter region of fresh rabbit globes was ablated to a depth of 155 microns with an excimer laser. Corneas were excised, cultured at the air-liquid interface in defined culture medium supplemented with transforming growth factor beta 1 (TGFB1), and treated with either 1% prednisolone acetate or with 22.5 μM cationic nanoparticles complexed with a triple combination of siRNAs (NP-siRNA) targeting TGFB1, TGFB Receptor (TGFBR2) and connective tissue growth factor (CTGF). Scar formation was measured using image analysis of digital images and levels of smooth muscle actin (SMA) were assessed in ablated region of corneas using qRT-PCR and immunostaining. Ex vivo cultured corneas developed intense haze-like scar in the wounded areas and levels of mRNAs for pro-fibrotic genes were significantly elevated 3-8 fold in wounded tissue compared to unablated corneas. Treatment with NP-siRNA or steroid significantly reduced quantitative haze levels by 55% and 68%, respectively, and reduced SMA mRNA and immunohistostaining. This ex vivo corneal culture system reproduced key molecular patterns of corneal scarring and haze formation generated in rabbits. Treatment with NP-siRNAs targeting key scarring genes or an anti-inflammatory steroid reduced corneal haze and SMA mRNA and protein.
Swaminathan SS, Oh D-J, Kang MH, Rhee DJ. Aqueous outflow: segmental and distal flow. J Cataract Refract Surg 2014;40(8):1263-72.Abstract
UNLABELLED: The elevated intraocular pressure (IOP) of primary open-angle glaucoma is caused by impaired outflow of aqueous humor through the trabecular meshwork. Within the juxtacanalicular region, alterations of both extracellular matrix homeostasis and the cellular tone of trabecular meshwork endothelial and the inner wall of Schlemm canal cells affect outflow. Newer pharmacologic agents that target trabecular meshwork and Schlemm canal cell cytoskeleton lower IOP. Aqueous drainage occurs nonhomogenously with greater flow going through certain portions of the TM and less going through other portions-a concept known as segmental flow, which is theoretically the result of outflow being dependent on the presence of discrete pores within Schlemm canal. The limited long-term success of trabecular meshwork bypass surgeries implicates the potential impact of resistance in Schlemm canal itself and collector channels. Additionally, others have observed that outflow occurs preferentially near collector channels. These distal structures may be more important to aqueous outflow than previously believed. FINANCIAL DISCLOSURE: Dr. Rhee is a consultant to Aerie Pharmaceuticals, Alcon Laboratories, Inc., Allegan, Inc., Aquesys, Inc., Glaukos Corp., Ivantis, Inc., Johnson & Johnson, Merck Sharp & Dohme Corp. and Santen, Inc., and has received research funding from Alcon Laboratories, Inc., Merck Sharp & Dohme Corp., and Ivantis, Inc. No other author has a financial or proprietary interest in any material or method mentioned.
V
Valdez CN, Arboleda-Velasquez JF, Amarnani DS, Kim LA, D'Amore PA. Retinal microangiopathy in a mouse model of inducible mural cell loss. Am J Pathol 2014;184(10):2618-26.Abstract
Diabetes can lead to vision loss because of progressive degeneration of the neurovascular unit in the retina, a condition known as diabetic retinopathy. In its early stages, the pathology is characterized by microangiopathies, including microaneurysms, microhemorrhages, and nerve layer infarcts known as cotton-wool spots. Analyses of postmortem human retinal tissue and retinas from animal models indicate that degeneration of the pericytes, which constitute the outer layer of capillaries, is an early event in diabetic retinopathy; however, the relative contribution of specific cellular components to the pathobiology of diabetic retinopathy remains to be defined. We investigated the phenotypic consequences of pericyte death on retinal microvascular integrity by using nondiabetic mice conditionally expressing a diphtheria toxin receptor in mural cells. Five days after administering diphtheria toxin in these adult mice, changes were observed in the retinal vasculature that were similar to those observed in diabetes, including microaneurysms and increased vascular permeability, suggesting that pericyte cell loss is sufficient to trigger retinal microvascular degeneration. Therapies aimed at preventing or delaying pericyte dropout may avoid or attenuate the retinal microangiopathy associated with diabetes.
W
Wang S, Sengel C, Emerson MM, Cepko CL. A gene regulatory network controls the binary fate decision of rod and bipolar cells in the vertebrate retina. Dev Cell 2014;30(5):513-27.Abstract
Gene regulatory networks (GRNs) regulate critical events during development. In complex tissues, such as the mammalian central nervous system (CNS), networks likely provide the complex regulatory interactions needed to direct the specification of the many CNS cell types. Here, we dissect a GRN that regulates a binary fate decision between two siblings in the murine retina, the rod photoreceptor and bipolar interneuron. The GRN centers on Blimp1, one of the transcription factors (TFs) that regulates the rod versus bipolar cell fate decision. We identified a cis-regulatory module (CRM), B108, that mimics Blimp1 expression. Deletion of genomic B108 by CRISPR/Cas9 in vivo using electroporation abolished the function of Blimp1. Otx2 and RORβ were found to regulate Blimp1 expression via B108, and Blimp1 and Otx2 were shown to form a negative feedback loop that regulates the level of Otx2, which regulates the production of the correct ratio of rods and bipolar cells.
Woodward AM, Argüeso P. Expression analysis of the transmembrane mucin MUC20 in human corneal and conjunctival epithelia. Invest Ophthalmol Vis Sci 2014;55(10):6132-8.Abstract
PURPOSE: Cell surface mucins are a group of highly O-glycosylated transmembrane glycoproteins responsible for the protection of epithelial cells on mucosal surfaces. The aim of this study was to investigate the localization and regulation of mucin 20 (MUC20) at the ocular surface. METHODS: Localization of MUC20 in human corneal and conjunctival epithelia was evaluated by immunofluorescence microscopy. Immortalized corneal (HCLE) and conjunctival (HCjE) cell lines were grown at different stages of differentiation and subjected to quantitative PCR and Western blot analyses. Cell surface proteins on apical cell membranes were biotinylated and isolated by neutravidin chromatography. RESULTS: The MUC20 was detected throughout the entire human ocular surface epithelia, predominantly in cell membranes within intermediate cell layers. In conjunctiva, MUC20 also was observed in the cytoplasm of apical cells within the stratified squamous epithelium, but not in goblet cells. Quantitative PCR and immunoblotting demonstrated expression of MUC20 in HCLE and HCjE cells. Induction of differentiation with serum-containing medium resulted in upregulation of MUC20 mRNA and protein. Biotin labeling of the surface of stratified cultures revealed low levels of MUC20 protein on apical glycocalyces. Further, MUC20 was not detected in the cell culture media or in human tears, suggesting that the extracellular domain of MUC20 is not released from the ocular surface as described previously for other cell surface mucins. CONCLUSIONS: Our results indicate that MUC20 is a novel transmembrane mucin expressed by the human corneal and conjunctival epithelia, and suggest that differential expression of MUC20 during differentiation has a role in maintaining ocular surface homeostasis.
Wu EW, Schaumberg DA, Park SK. Environmental cadmium and lead exposures and age-related macular degeneration in U.S. adults: the National Health and Nutrition Examination Survey 2005 to 2008. Environ Res 2014;133:178-84.Abstract
Age-related macular degeneration (AMD) is a complex disease resulting from the interplay of genetic predisposition and environmental exposures, and has been linked to oxidative stress and inflammatory mechanisms. Lead and cadmium can accumulate in human retinal tissues and may damage the retina through oxidative stress, and may thereby play a role in the development of AMD. We examined associations between blood lead, blood cadmium, and urinary cadmium concentrations and the presence of AMD in 5390 participants aged 40 years and older with blood lead and blood cadmium measures and a subsample of 1548 with urinary cadmium measures in the 2005-2008 National Health and Nutrition Examination Surveys. AMD was identified by grading retinal photographs with a modification of the Wisconsin Age-Related Maculopathy Grading System. The weighted prevalence of AMD was 6.6% (n=426). Controlling for age, gender, race/ethnicity, education and body mass index, adults in the highest blood cadmium quartile had higher odds of AMD compared to the lowest quartile (odds ratio [OR], 1.56; 95% CI, 1.02-2.40), with a significant trend across quartiles (p-trend=0.02). After further adjustment for pack-years of cigarette smoking, estimates were somewhat attenuated (OR, 1.43; 95% CI, 0.91-2.27; p-trend=0.08). Similar associations were found with urinary cadmium. The association between urinary cadmium and AMD was stronger in non-Hispanic whites (NHW) than in non-Hispanic blacks (NHB) (OR, 3.31; 95% CI, 1.37-8.01 for levels above versus below the median among NHW; OR,1.45; 95% CI, 0.40-5.32 for levels above versus below the median among NHB; p-interaction=0.03). We found no association between blood lead levels and AMD. Higher cadmium body burden may increase risk of AMD, particularly among non-Hispanic white individuals; however, additional studies are needed before firm conclusions can be drawn.

Pages