August 2021

W
WuDunn D, Takusagawa HL, Sit AJ, Rosdahl JA, Radhakrishnan S, Hoguet A, Han Y, Chen TC. OCT Angiography for the Diagnosis of Glaucoma: A Report by the American Academy of Ophthalmology. Ophthalmology 2021;128(8):1222-1235.Abstract
PURPOSE: To review the current published literature on the use of OCT angiography (OCTA) to help detect changes associated with the diagnosis of primary open-angle glaucoma. METHODS: Searches of the peer-reviewed literature were conducted in March 2018, June 2018, April 2019, December 2019, and June 2020 in the PubMed and Cochrane Library databases. Abstracts of 459 articles were examined to exclude reviews and non-English articles. After inclusion and exclusion criteria were applied, 75 articles were selected and the panel methodologist rated them for strength of evidence. Three articles were rated level I and 57 articles were rated level II. The 15 level III articles were excluded. RESULTS: OCT angiography can detect decreased capillary vessel density within the peripapillary nerve fiber layer (level II) and macula (level I and II) in patients with suspected glaucoma, preperimetric glaucoma, and perimetric glaucoma. The degree of vessel density loss correlates significantly with glaucoma severity both overall and topographically (level II) as well as longitudinally (level I). For differentiating glaucomatous from healthy eyes, some studies found that peripapillary and macular vessel density measurements by OCTA show a diagnostic ability (area under the receiver operating characteristic curve) that is comparable with structural OCT retinal nerve fiber and ganglion cell thickness measurements, whereas other studies found that structural OCT measurements perform better. Choroidal or deep-layer microvasculature dropout as measured by OCTA is also associated with glaucoma damage (level I and II). Lower peripapillary and macular vessel density and choroidal microvasculature dropout are associated with faster rates of disease progression (level I and II). CONCLUSIONS: Vessel density loss associated with glaucoma can be detected by OCTA. Peripapillary, macular, and choroidal vessel density parameters may complement visual field and structural OCT measurements in the diagnosis of glaucoma.
X
Xu BY, Friedman DS, Foster PJ, Jiang Y, Pardeshi AA, Jiang Y, Munoz B, Aung T, He M. Anatomic Changes and Predictors of Angle Widening after Laser Peripheral Iridotomy: The Zhongshan Angle Closure Prevention Trial. Ophthalmology 2021;128(8):1161-1168.Abstract
PURPOSE: To assess anatomic changes after laser peripheral iridotomy (LPI) and predictors of angle widening based on anterior segment (AS) OCT and angle opening based on gonioscopy. DESIGN: Prospective observational study. PARTICIPANTS: Primary angle-closure suspects (PACSs) 50 to 70 years of age. METHODS: Participants of the Zhongshan Angle Closure Prevention (ZAP) Trial underwent gonioscopy and AS-OCT imaging at baseline and 2 weeks after LPI. Primary angle-closure suspect was defined as the inability to visualize pigmented trabecular meshwork in 2 or more quadrants on static gonioscopy. Laser peripheral iridotomy was performed on 1 eye per patient in superior (between 11 and 1 o'clock) or temporal or nasal locations (at or below 10:30 or 1:30 o'clock). Biometric parameters in horizontal and vertical AS-OCT scans were measured and averaged. Linear and logistic regression modeling were performed to determine predictors of angle widening, defined as change in mean angle opening distance measured at 750 μm from the scleral spur (AOD750); poor angle widening, defined as the lowest quintile of change in mean AOD750; and poor angle opening, defined as residual PACS after LPI based on gonioscopy. MAIN OUTCOME MEASURES: Anatomic changes and predictors of angle widening and opening after LPI. RESULTS: Four hundred fifty-four patients were included in the analysis. Two hundred nineteen underwent superior LPI and 235 underwent temporal or nasal LPI. Significant changes were found among most biometric parameters (P < 0.006) after LPI, including greater AOD750 (P < 0.001). One hundred twenty eyes (26.4%) showed residual PACS after LPI. In multivariate regression analysis, superior LPI location (P = 0.004), smaller AOD750 (P < 0.001), and greater iris curvature (P < 0.001), were predictive of greater angle widening. Temporal or nasal LPI locations (odds ratio [OR], 2.60, P < 0.001) was predictive of poor angle widening. Smaller mean gonioscopy grade (OR, 0.34, 1-grade increment) was predictive of poor angle opening. CONCLUSIONS: Superior LPI location results in significantly greater angle widening compared with temporal or nasal locations in a Chinese population with PACS. This supports consideration of superior LPI locations to optimize anatomic changes after LPI.
Y
Yu K, Guo Y, Ge Q-M, Su T, Shi W-Q, Zhang L-J, Shu H-Y, Pan Y-C, Liang R-B, Li Q-Y, Shao Y. Author Correction: Altered spontaneous activity in the frontal gyrus in dry eye: a resting-state functional MRI study. Sci Rep 2021;11(1):17653.
Z
Zhang M, Chen T, Zhong Y. Demographic and prognostic factors of optic nerve astrocytoma: a retrospective study of surveillance, epidemiology, and end results (SEER). BMC Cancer 2021;21(1):976.Abstract
BACKGROUND: Optic nerve astrocytomas (ONAs) are neurological neoplasms in the central nervous system (CNS), and they have the highest incidence rate among all the tumor types in the visual pathway. In this study, we conducted a Surveillance, Epidemiology, and End Results (SEER) -based research to explore the demographic, survival, and prognostic factors of patients diagnosed with ONAs. METHODS: Utilizing the SEER database, we retrospectively evaluated data of patients diagnosed with ONAs of all ages from 1984 to 2016. We used the Student's t distribution to test variables of patients and various characteristics, and Kaplan-Meier curve to illustrate overall survival (OS) with 95.0% confidence intervals (CIs). We also performed univariate and multivariate analyses to evaluate various variables' validity on overall survival. RESULTS: A total of 1004 cases were analyzed, and revealed that age (P<0.001, hazard ratio (HR) = 8.830, 95% CI: 4.088-19.073), tumor grade (P<0.001, HR = 1.927, 95% CI: 1.516-2.450), diagnostic confirmation (P<0.001, HR = 2.444, 95% CI: 1.632-3.660), and histology type (P = 0.046, HR = 1.563, 95% CI: 1.008-2.424) of the tumor were associated with decreased survival. CONCLUSIONS: From this large, comparative study of ONAs, we found that younger age may be considered as a protective indicator, while high-grade astrocytic tumors have a worse prognosis. We also found that diagnostic confirmation and tumor grade were independent prognostic factors in this patient population.

Pages