December 2021

R
Rothman AL, Chang R, Kolomeyer NN, Turalba A, Stein JD, Boland MV. American Glaucoma Society Position Paper: Information Sharing Using Established Standards is Essential to the Future of Glaucoma Care. Ophthalmol Glaucoma 2021;
S
Sharifi S, Sharifi H, Akbari A, Chodosh J. Systematic optimization of visible light-induced crosslinking conditions of gelatin methacryloyl (GelMA). Sci Rep 2021;11(1):23276.Abstract
Gelatin methacryloyl (GelMA) is one of the most widely used photo-crosslinkable biopolymers in tissue engineering. In in presence of an appropriate photoinitiator, the light activation triggers the crosslinking process, which provides shape fidelity and stability at physiological temperature. Although ultraviolet (UV) has been extensively explored for photo-crosslinking, its application has been linked to numerous biosafety concerns, originated from UV phototoxicity. Eosin Y, in combination with TEOA and VC, is a biosafe photoinitiation system that can be activated via visible light instead of UV and bypasses those biosafety concerns; however, the crosslinking system needs fine-tuning and optimization. In order to systematically optimize the crosslinking conditions, we herein independently varied the concentrations of Eosin Y [(EY)], triethanolamine (TEOA), vinyl caprolactam (VC), GelMA precursor, and crosslinking times and assessed the effect of those parameters on the properties the hydrogel. Our data showed that except EY, which exhibited an optimal concentration (~ 0.05 mM), increasing [TEOA], [VA], [GelMA], or crosslinking time improved mechanical (tensile strength/modulus and compressive modulus), adhesion (lap shear strength), swelling, biodegradation properties of the hydrogel. However, increasing the concentrations of crosslinking reagents ([TEOA], [VA], [GelMA]) reduced cell viability in 3-dimensional (3D) cell culture. This study enabled us to optimize the crosslinking conditions to improve the properties of the GelMA hydrogel and to generate a library of hydrogels with defined properties essential for different biomedical applications.
Shen J, Rossato FA, Cano I, Ng YSE. Novel engineered, membrane-tethered VEGF-A variants promote formation of filopodia, proliferation, survival, and cord or tube formation by endothelial cells via persistent VEGFR2/ERK signaling and activation of CDC42/ROCK pathways. FASEB J 2021;35(12):e22036.Abstract
Therapeutic angiogenesis would be clinically valuable in situations such as peripheral vascular disease in diabetic patients and tissue reperfusion following ischemia or injury, but approaches using traditional isoforms of vascular endothelial growth factor-A (VEGF) have had little success. The isoform VEGF165 is both soluble and matrix-associated, but can cause pathologic vascular changes. Freely diffusible VEGF121 is not associated with pathologic angiogenesis, but its failure to remain in the vicinity of the targeted area presents therapeutic challenges. In this study, we evaluate the cellular effects of engineered VEGF variants that tether extracellular VEGF121 to the cell membrane with the goal of activating VEGF receptor 2 (VEGFR2) in a sustained, autologous fashion in endothelial cells. When expressed by primary human retinal endothelial cells (hRECs), the engineered, membrane-tethered variants eVEGF-38 and eVEGF-53 provide a lasting VEGF signal that induces cell proliferation and survival, increases endothelial permeability, promotes the formation of a cord/tube network, and stimulates the formation of elongated filopodia on the endothelial cells. The engineered VEGF variants activate VEGFR2, MAPK/ERK, and the Rho GTPase mediators CDC42 and ROCK, activities that are required for the formation of the elongated filopodia. The sustained, pro-angiogenic activities induced by eVEGF-38 and eVEGF-53 support the potential of engineered VEGF variants-overexpressing endothelial cells as a novel combination of gene and cell-based therapeutic strategy for stimulating endothelial cell-autologous therapeutic angiogenesis.
Siddiqui N, Chen EM, Parikh R, Douglas VP, Douglas KA, Feng PW, Armstrong GW. Epidemiology of United States Inpatient Open Globe Injuries from 2009-2015. Ophthalmic Epidemiol 2021;28(6):469-478.Abstract
PURPOSE: To study the epidemiology of inpatient open globe injuries (OGI) in the United States (US). METHODS: This was a retrospective cohort study of patients with a primary diagnosis of OGI in the National Inpatient Sample (NIS) from 2009 to 2015. Sociodemographic characteristics, including age, gender, race, ethnicity, insurance, and income were stratified for comparison. Annual prevalence rates were calculated using 2010 US Census data. Statistical analysis included Chi-square tests, ANCOVA, and Tukey tests. RESULTS: A total of 6,821 US inpatient hospital discharge records met inclusion/exclusion criteria. The estimated national prevalence of OGI during the 5-year period from 2009 to 2015 was 34,061 (95% confidence interval [CI] 31,445-36,677). The overall annual prevalence rate was 1.58 per 100,000 per year (CI 1.56-1.59). Overall, average annual prevalence rates were highest among patients 85 years or older (7.72, CI 6.95-8.49), on Medicare (3.92, CI 3.84-4.00), males (2.28, CI 2.25-2.30), African Americans (2.38, CI 2.32-2.44), and Native Americans (1.80, CI 1.62-2.00). OGI rates were lowest among Whites (1.21, CI 1.19-1.22), females (0.89, CI 0.87-0.91), those with private insurance (0.84, CI 0.82-0.86), and Asians (0.69, CI 0.64-0.74). Being in the lowest income quartile was a risk factor for OGI (p < .05). CONCLUSIONS: Inpatient OGIs disproportionately affected those over 85, young males, elderly females, patients of African-American descent, on Medicare, and in the lowest income quartile. Additionally, children and young children had lower rates of OGI compared to adolescents. Further studies should delineate causes for socioeconomic differences in OGI rates to guide future public health measures.
Sobel RK, Aakalu VK, Vagefi RM, Foster JA, Tao JP, Freitag SK, Wladis EJ, McCulley TJ, Yen MT. Orbital Radiation for Thyroid Eye Disease: A Report by the American Academy of Ophthalmology. Ophthalmology 2021;Abstract
PURPOSE: To review the current literature on the safety and efficacy of orbital radiation for the management of thyroid eye disease (TED). METHODS: A literature search was conducted last in February 2021 of the PubMed database to identify all articles published in the English language on original research that assessed the effect of orbital radiation on TED. The search identified 55 articles, and 18 met the inclusion criteria for this assessment. A panel methodologist then assigned a level of evidence rating for each study, and all of them were rated level III. RESULTS: Two large retrospective studies demonstrated the efficacy of radiation treatment, with or without corticosteroid use, in preventing or treating compressive optic neuropathy (CON). Three studies highlighted the role of orbital radiation therapy (RT) to facilitate the tapering of corticosteroids. Several other studies showed a possible role for RT to improve diplopia and soft tissue signs. CONCLUSIONS: Although no level I or level II evidence exists, the best available evidence suggests that orbital radiation, used with or without corticosteroids, is efficacious in preventing CON, improving motility restriction, and decreasing clinical activity in TED. Orbital radiation also may facilitate a corticosteroid taper. Together, these studies show that RT seems to modify the active phase of TED. Short-term risks of orbital radiation are minor, but long-term outcome data are lacking.
Sun JK, Josic K, Melia M, Glassman AR, Bailey C, Chalam KV, Chew EY, Cukras C, Grover S, Jaffe GJ, Lee R, Nielsen JS, Thompson DJS, Wiley HE, Ferris FL, Ferris FL. Conversion of Central Subfield Thickness Measurements of Diabetic Macular Edema Across Cirrus and Spectralis Optical Coherence Tomography Instruments. Transl Vis Sci Technol 2021;10(14):34.Abstract
Purpose: Develop equations to convert Cirrus central subfield thickness (CST) to Spectralis CST equivalents and vice versa in eyes with diabetic macular edema (DME). Methods: The DRCR Retina Network Protocol O data were split randomly to train (70% sample) and validate (30% sample) conversion equations. Data from an independent study (CADME) also validated the equations. Bland-Altman 95% limits of agreement between predicted and observed values evaluated the equations. Results: Protocol O included 374 CST scan pairs from 187 eyes (107 participants). The CADME study included 150 scan pairs of 37 eyes (37 participants). Proposed conversion equations are Spectralis = 40.78 + 0.95 × Cirrus and Cirrus = 1.82 + 0.94 × Spectralis regardless of age, sex, or CST. Predicted values were within 10% of observed values in 101 (90%) of Spectralis and 99 (88%) of Cirrus scans in the validation data; and in 136 (91%) of the Spectralis and 148 (99%) of the Cirrus scans in the CADME data. Adjusting for within-eye correlations, 95% of conversions are estimated to be within 17% (95% confidence interval, 14%-21%) of CST on Spectralis and within 22% (95% confidence interval, 18%-28%) of CST on Cirrus. Conclusions: Conversion equations developed in this study allow the harmonization of CST measurements for eyes with DME using a mix of current Cirrus and Spectralis device images. Translational Relevance: The CSTs measured on Cirrus and Spectralis devices are not directly comparable owing to outer boundary segmentation differences. Converting CST values across spectral domain optical coherence tomography instruments should benefit both clinical research and standard care efforts.
W
Waldman AT, Benson L, Sollee JR, Lavery AM, Liu GW, Green AJ, Waubant E, Heidary G, Conger D, Graves J, Greenberg B. Interocular Difference in Retinal Nerve Fiber Layer Thickness Predicts Optic Neuritis in Pediatric-Onset Multiple Sclerosis. J Neuroophthalmol 2021;41(4):469-475.Abstract
BACKGROUND: Optical coherence tomography (OCT) is capable of quantifying retinal damage. Defining the extent of anterior visual pathway injury is important in multiple sclerosis (MS) as a way to document evidence of prior disease, including subclinical injury, and setting a baseline for patients early in the course of disease. Retinal nerve fiber layer (RNFL) thickness is typically classified as low if values fall outside of a predefined range for a healthy population. In adults, an interocular difference (IOD) in RNFL thickness greater than 5 μm identified a history of unilateral optic neuritis (ON). Through our PERCEPTION (PEdiatric Research Collaboration ExPloring Tests in Ocular Neuroimmunology) study, we explored whether RNFL IOD informs on remote ON in a multicenter pediatric-onset MS (POMS) cohort. METHODS: POMS (defined using consensus criteria and first attack <18 years) patients were recruited from 4 academic centers. A clinical history of ON (>6 months prior to an OCT scan) was confirmed by medical record review. RNFL thickness was measured on Spectralis machines (Heidelberg, Germany). Using a cohort of healthy controls from our centers tested on the same machines, RNFL thickness <86 μm (<2 SDs below the mean) was defined as abnormal. Based on previously published findings in adults, an RNFL IOD >5 μm was defined as abnormal. The proportions of POMS participants with RNFL thinning (<86 μm) and abnormal IOD (>5 μm) were calculated. Logistic regression was used to determine whether IOD was associated with remote ON. RESULTS: A total of 157 participants with POMS (mean age 15.2 years, SD 3.2; 67 [43%] with remote ON) were enrolled. RNFL thinning occurred in 45 of 90 (50%) ON eyes and 24 of 224 (11%) non-ON eyes. An IOD >5 μm was associated with a history of remote ON (P < 0.001). An IOD >5 μm occurred in 62 participants, 40 (65%) with remote ON. Among 33 participants with remote ON but normal RNFL values (≥86 μm in both eyes), 14 (42%) were confirmed to have ON by IOD criteria (>5 μm). CONCLUSIONS: In POMS, the diagnostic yield of OCT in confirming remote ON is enhanced by considering RNFL IOD, especially for those patients with RNFL thickness for each eye in the normal range. An IOD >5 μm in patients with previous visual symptoms suggests a history of remote ON.
Wang T, Zhou P, Xie X, Tomita Y, Cho S, Tsirukis D, Lam E, Luo HR, Sun Y. Myeloid lineage contributes to pathological choroidal neovascularization formation via SOCS3. EBioMedicine 2021;73:103632.Abstract
BACKGROUND: Pathological neovascularization in neovascular age-related macular degeneration (nAMD) is the leading cause of vision loss in the elderly. Increasing evidence shows that cells of myeloid lineage play important roles in controlling pathological endothelium formation. Suppressor of cytokine signaling 3 (SOCS3) pathway has been linked to neovascularization. METHODS: We utilised a laser-induced choroidal neovascularization (CNV) mouse model to investigate the neovascular aspect of human AMD. In several cell lineage reporter mice, bone marrow chimeric mice and Socs3 loss-of-function (knockout) and gain-of-function (overexpression) mice, immunohistochemistry, confocal, and choroidal explant co-culture with bone marrow-derived macrophage medium were used to study the mechanisms underlying pathological CNV formation via myeloid SOCS3. FINDINGS: SOCS3 was significantly induced in myeloid lineage cells, which were recruited into the CNV lesion area. Myeloid Socs3 overexpression inhibited laser-induced CNV, reduced myeloid lineage-derived macrophage/microglia recruitment onsite, and attenuated pro-inflammatory factor expression. Moreover, SOCS3 in myeloid regulated vascular sprouting ex vivo in choroid explants and SOCS3 agonist reduced in vivo CNV. INTERPRETATION: These findings suggest that myeloid lineage cells contributed to pathological CNV formation regulated by SOCS3. FUNDING: This project was funded by NIH/NEI (R01EY030140, R01EY029238), BrightFocus Foundation, American Health Assistance Foundation (AHAF), and Boston Children's Hospital Ophthalmology Foundation for YS and the National Institutes of Health/National Heart, Lung and Blood Institute (U01HL098166) for PZ.
Waxman S, Brazile BL, Yang B, Lee P-Y, Hua Y, Gogola AL, Lam P, Voorhees AP, Rizzo JF, Jakobs TC, Sigal IA. Lamina cribrosa vessel and collagen beam networks are distinct. Exp Eye Res 2021;:108916.Abstract
Our goal was to analyze the spatial interrelation between vascular and collagen networks in the lamina cribrosa (LC). Specifically, we quantified the percentages of collagen beams with/without vessels and of vessels inside/outside of collagen beams. To do this, the vasculature of six normal monkey eyes was labeled by perfusion post-mortem. After enucleation, coronal cryosections through the LC were imaged using fluorescence and polarized light microscopy to visualize the blood vessels and collagen beams, respectively. The images were registered to form 3D volumes. Beams and vessels were segmented, and their spatial interrelationship was quantified in 3D. We found that 22% of the beams contained a vessel (range 14%-32%), and 21% of vessels were outside beams (13%-36%). Stated differently, 78% of beams did not contain a vessel (68%-86%), and 79% of vessels were inside a beam (64%-87%). Individual monkeys differed significantly in the fraction of vessels outside beams (p < 0.01 by linear mixed effect analysis), but not in the fraction of beams with vessels (p > 0.05). There were no significant differences between contralateral eyes in the percent of beams with vessels and of vessels outside beams (p > 0.05). Our results show that the vascular and collagenous networks of the LC in monkey are clearly distinct, and the historical notions that each LC beam contains a vessel and all vessels are within beams are inaccurate. We postulate that vessels outside beams may be relatively more vulnerable to mechanical compression by elevated IOP than are vessels shielded inside of beams.
Whitman MC, Barry BJ, Robson CD, Facio FM, Van Ryzin C, Chan W-M, Lehky TJ, Thurm A, Zalewski C, King KA, Brewer C, Almpani K, Lee JS, Delaney A, FitzGibbon EJ, Lee PR, Toro C, Paul SM, Abdul-Rahman OA, Webb BD, Jabs EW, Moller HU, Larsen DA, Antony JH, Troedson C, Ma A, Ragnhild G, Wirgenes KV, Tham E, Kvarnung M, Maarup TJ, MacKinnon S, Hunter DG, Collins FS, Manoli I, Engle EC. TUBB3 Arg262His causes a recognizable syndrome including CFEOM3, facial palsy, joint contractures, and early-onset peripheral neuropathy. Hum Genet 2021;140(12):1709-1731.Abstract
Microtubules are formed from heterodimers of alpha- and beta-tubulin, each of which has multiple isoforms encoded by separate genes. Pathogenic missense variants in multiple different tubulin isoforms cause brain malformations. Missense mutations in TUBB3, which encodes the neuron-specific beta-tubulin isotype, can cause congenital fibrosis of the extraocular muscles type 3 (CFEOM3) and/or malformations of cortical development, with distinct genotype-phenotype correlations. Here, we report fourteen individuals from thirteen unrelated families, each of whom harbors the identical NM_006086.4 (TUBB3):c.785G>A (p.Arg262His) variant resulting in a phenotype we refer to as the TUBB3 R262H syndrome. The affected individuals present at birth with ptosis, ophthalmoplegia, exotropia, facial weakness, facial dysmorphisms, and, in most cases, distal congenital joint contractures, and subsequently develop intellectual disabilities, gait disorders with proximal joint contractures, Kallmann syndrome (hypogonadotropic hypogonadism and anosmia), and a progressive peripheral neuropathy during the first decade of life. Subsets may also have vocal cord paralysis, auditory dysfunction, cyclic vomiting, and/or tachycardia at rest. All fourteen subjects share a recognizable set of brain malformations, including hypoplasia of the corpus callosum and anterior commissure, basal ganglia malformations, absent olfactory bulbs and sulci, and subtle cerebellar malformations. While similar, individuals with the TUBB3 R262H syndrome can be distinguished from individuals with the TUBB3 E410K syndrome by the presence of congenital and acquired joint contractures, an earlier onset peripheral neuropathy, impaired gait, and basal ganglia malformations.
Y
Yu C, Li C-Q, Ge Q-M, Shu H-Y, Liao X-L, Pan Y-C, Wu J-L, Su T, Zhang L-J, Liang R-B, Shao Y, Zeng E-M. Altered Resting State Functional Activity of Brain Regions in Neovascular Glaucoma: A Resting-State Functional Magnetic Resonance Imaging Study. Front Neurosci 2021;15:800466.Abstract
Background: Neovascular glaucoma (NVG) is a serious eye disease that causes irreversible damage to the eye. It can significantly increase intraocular pressure and cause severe pain, as well as abnormal activity in the cortical and pre-cortical visual systems. However, there are few studies in this area. This trial assessed the altered regional brain activity in patients with NVG using the percentage of fluctuation amplitude (PerAF) method. Methods: Resting-state functional MRI (rs-fMRI) scans were conducted in 18 individuals with NVG and 18 healthy controls (HCs), matched for education level, gender, and age. The PerAF method was applied to assess brain activity. Mean PerAF values of brain regions in NVG and HCs were compared using receiver operating characteristic (ROC) curves. Results: Lower PerAF values were found in the NVG group than in controls in the right anterior cingulate and paracingulate gyri (ACG.R), right superior occipital gyrus (SOG.R) and left superior frontal gyrus (orbital part) (ORBsup.L) (p < 0.001). In contrast, PerAF value was higher in NVG patients than in controls in the left inferior temporal gyrus (ITG.L) (p < 0.001). The hospital anxiety and depression scale (HADS) and visual analog score (VAS) were significantly and positively correlated with PerAF in ITG.L (r = 0.9331, p < 0.0001; and r = 0.7816, p = 0.0001, respectively). Conclusion: Abnormal activity in the patient's brain regions further confirms that the NVG affects the entire brain, not just the visual pathways and posterior retinal mechanisms (including the hypothalamic lateral geniculate nucleus and the primary visual cortex). This strengthens our understanding of the NVG and provides potential diagnostic and therapeutic support for patients who are difficult to diagnose and treat early.

Pages