January 2021

W
Wan MJ, AlShaker S, Hunter DG. Use of Botulinum Toxin in Ophthalmology. Handb Exp Pharmacol 2021;263:147-160.Abstract
Botulinum toxin is an important treatment for many conditions in ophthalmology, including strabismus, nystagmus, blepharospasm, hemifacial spasm, spastic and congenital entropion, corneal exposure, and persistent epithelial defects. The mechanism of action of botulinum toxin for both strabismus and nystagmus is the neuromuscular blockade and transient paralysis of extraocular muscles, but when botulinum toxin is used for some forms of strabismus, a single injection can convey indefinite benefits. There are two unique mechanisms of action that account for the long-term effect on ocular alignment: (1) the disruption of a balanced system of agonist-antagonist extraocular muscles and (2) the reestablishment of central control of alignment by the binocular visual system. For other ocular conditions, botulinum toxin acts through transient paralysis of periocular muscles. Botulinum toxin is a powerful tool in ophthalmology, achieving its therapeutic effects by direct neuromuscular blockade of extraocular and periocular muscles and by unique mechanisms related to the underlying structure and function of the visual system.
Wan MJ, AlShaker S, Hunter DG. Correction to: Use of Botulinum Toxin in Ophthalmology. Handb Exp Pharmacol 2021;263:283.
Winter A, Chwalisz B. MRI Characteristics of NMO, MOG and MS Related Optic Neuritis. Semin Ophthalmol 2021;:1-10.Abstract
Acute isolated optic neuritis can be the initial presentation of demyelinating inflammatory central nervous system disease related to multiple sclerosis (MS), neuromyelitis optica (NMO) or myelin oligodendrocyte glycoprotein antibody disease (MOG-AD). In addition to the well-characterized brain and spinal cord imaging features, important and characteristic differences in the radiologic appearance of the optic nerves in these disorders are being described, and magnetic resonance imaging (MRI) of the optic nerves is becoming an essential tool in the differential diagnosis of optic neuritis. Whereas typical demyelinating optic neuritis is a relatively mild and self-limited disease, atypical optic neuritis in NMO and MOG-AD is potentially much more vision-threatening and merits a different treatment approach. Thus, differentiation based on MRI features may be particularly important during the first attack of optic neuritis, when antibody status is not yet known. This review discusses the optic nerve imaging in the major demyelinating disorders with an emphasis on clinically relevant differences that can help clinicians assess and manage these important neuro-ophthalmic disorders. It also reviews the utility of optic nerve MRI as a prognostic indicator in acute optic neuritis.
Woodward AM, Senchyna M, Argüeso P. Short-Term Reproducibility of MUC5AC Measurement in Human Tear Fluid. Diagnostics (Basel) 2021;11(1)Abstract
The assessment of tear fluid components is a common and valuable approach to understanding ocular surface disease and testing the efficacy of novel therapeutic strategies. However, the interpretation and utility of the findings can be limited by changes in the composition of the tear film, particularly in studies requiring repetitive patient sampling. Here, tear samples were collected twice within a one-hour interval to evaluate the short-term reproducibility of an immunoassay aimed to measure the amount of MUC5AC mucin. We found no statistical difference in total protein or MUC5AC content between the two consecutive collections of tear fluid, although the inter-individual variability in each group was high, with coefficients of variation exceeding 30% and 50%, respectively. Scatterplots showed a significant correlation in both protein and MUC5AC following collection within a one-hour interval. These data indicate that, regardless of the high inter-individual variability, repeated collection of tear fluid within an hour interval produces reproducible intra-individual data in terms of MUC5AC mucin content, and suggest that the normal mucin composition of the tear fluid can be re-established within an hour of the initial collection.
Wu W, Xia X, Tang L, Yao F, Xu H, Lei H. Normal vitreous promotes angiogenesis via activation of Axl. FASEB J 2021;35(1):e21152.Abstract
Vitreous has been reported to prevent tumor angiogenesis, but our previous findings indicate that vitreous activate the signaling pathway of phosphoinositide 3-kinase (PI3K)/Akt, which plays a critical role in angiogenesis. The goal of this research is to determine which role of vitreous plays in angiogenesis-related cellular responses in vitro. We found that in human retinal microvascular endothelial cells (HRECs) vitreous activates a number of receptor tyrosine kinases including Anexelekto (Axl), which plays an important role in angiogenesis. Subsequently, we discovered that depletion of Axl using CRISPR/Cas9 and an Axl-specific inhibitor R428 suppress vitreous-induced Akt activation and cell proliferation, migration, and tuber formation of HRECs. Therefore, this line of research not only demonstrate that vitreous promotes angiogenesis in vitro, but also reveal that Axl is one of receptor tyrosine kinases to mediate vitreous-induced angiogenesis in vitro, thereby providing a molecular basis for removal of vitreous as cleanly as possible when vitrectomy is performed in treating patients with proliferative diabetic retinopathy.
Wu DM, Ji X, Ivanchenko MV, Chung M, Piper M, Rana P, Wang SK, Xue Y, West E, Zhao SR, Xu H, Cicconet M, Xiong W, Cepko CL. Nrf2 overexpression rescues the RPE in mouse models of retinitis pigmentosa. JCI Insight 2021;6(2)Abstract
Nrf2, a transcription factor that regulates the response to oxidative stress, has been shown to rescue cone photoreceptors and slow vision loss in mouse models of retinal degeneration (rd). The retinal pigment epithelium (RPE) is damaged in these models, but whether it also could be rescued by Nrf2 has not been previously examined. We used an adeno-associated virus (AAV) with an RPE-specific (Best1) promoter to overexpress Nrf2 in the RPE of rd mice. Control rd mice showed disruption of the regular array of the RPE, as well as loss of RPE cells. Cones were lost in circumscribed regions within the cone photoreceptor layer. Overexpression of Nrf2 specifically in the RPE was sufficient to rescue the RPE, as well as the disruptions in the cone photoreceptor layer. Electron microscopy showed compromised apical microvilli in control rd mice but showed preserved microvilli in Best1-Nrf2-treated mice. The rd mice treated with Best1-Nrf2 had slightly better visual acuity. Transcriptome profiling showed that Nrf2 upregulates multiple oxidative defense pathways, reversing declines seen in the glutathione pathway in control rd mice. In summary, Nrf2 overexpression in the RPE preserves RPE morphology and survival in rd mice, and it is a potential therapeutic for diseases involving RPE degeneration, including age-related macular degeneration (AMD).
X
Xu BY, Friedman DS, Foster PJ, Jiang Y, Pardeshi AA, Jiang Y, Munoz B, Aung T, He M. Anatomical Changes and Predictors of Angle Widening After Laser Peripheral Iridotomy: The Zhongshan Angle Closure Prevention Trial. Ophthalmology 2021;Abstract
PURPOSE: To assess anatomical changes after laser peripheral iridotomy (LPI) and predictors of angle widening based on anterior segment OCT (AS-OCT) and angle opening based on gonioscopy in mainland Chinese primary angle closure suspects (PACS). DESIGN: Prospective observational study. PARTICIPANTS: 454 subjects aged 50 to 70 years with PACS. METHODS: Subjects received clinical examinations including gonioscopy and AS-OCT imaging at baseline and 2 weeks after LPI as part of the Zhongshan Angle Closure Prevention (ZAP) Trial. PACS was defined as inability to visualize pigmented trabecular meshwork in two or more quadrants on static gonioscopy. LPI was performed on one eye per subject in a superior (between 11 to 1 o'clock) or temporal or nasal (at or below 10:30 or 1:30 o'clock) location. Biometric parameters in horizontal and vertical AS-OCT scans were measured and averaged. Multivariable linear and logistic regression modeling were performed to determine predictors of angle widening, defined as change in continuous measurements of mean angle opening distance (AOD750), poor angle widening, defined as the lowest quintile of change in mean AOD750, and poor angle opening, defined as residual PACS after LPI based on gonioscopy. MAIN OUTCOME MEASURES: Anatomical changes and predictors of angle widening and opening after LPI. RESULTS: 454 subjects were included in the analysis. 219 received superior LPIs and 235 received temporal or nasal LPIs. There were significant changes among most biometric parameters (p<0.006) after LPI, including greater AOD750 (p<0.001). 120 eyes (26.4%) had residual PACS after LPI. In multivariable regression analysis, several baseline parameters, including superior LPI location (p=0.004), smaller AOD750 (p<0.001), and greater iris curvature (p<0.001), were predictive of greater angle widening. Temporal or nasal LPI locations (OR=2.60, p<0.0001) and greater baseline AOD750 (OR=2.58, 0.1 mm increment, p<0.001) were most predictive of poor angle widening based on AS-OCT. Smaller mean gonioscopy grade (OR=0.34, 1 grade increment) was most predictive of poor angle opening based on gonioscopy. CONCLUSIONS: Superior LPI location results in significantly greater angle widening based on AS-OCT compared to temporal or nasal locations in a Chinese population with PACS. This supports consideration of superior LPI locations to optimize anatomical changes after LPI.
Y
Yan Y, Ludwig CA, Liao YJ. Multimodal Imaging Features of Optic Disc Drusen. Am J Ophthalmol 2021;Abstract
PURPOSE: Identify key en face multimodal imaging features of optic disc drusen (ODD). DESIGN: Retrospective cross-sectional study. METHODS: . SETTING: Single academic center. PATIENT OR STUDY POPULATION: 786 patients (age 10-82 years) with diagnostic codes for ODD or the term "optic disc drusen" in clinical notes extracted using natural language processing. INTERVENTION OR OBSERVATION PROCEDURES: Color fundus image, green-light and blue-light fundus autofluorescence (FAF), near-infrared reflectance (NIR), and enhanced-depth imaging optical coherence tomography (EDI-OCT). MAIN OUTCOME MEASURES: Ophthalmic imaging characteristics and sensitivity of en face imaging compared with EDI-OCT. RESULTS: 38 (61 eyes) of 786 patients had high-quality EDI-OCT and en face multimodal imaging. Green-light FAF had the highest sensitivity (96.8%) and showed homogeneously hyperautofluorescence while blue-light FAF differentiated superficial and deep ODD by the heterogeneous brightness of FAF. Blue-light FAF (93.5%) and NIR (91.8%) were also sensitive and provided important features including the location, size, and depth of ODD and morphology of the optic disc and ODD-associated features such as horizontal hyperreflective lines and peripapillary hyperreflective ovoid mass-like structures (PHOMS), respectively. Color fundus imaging had the lowest sensitivity (82%). There was good inter-rater reliability for all en face imaging modalities (P < .0001 for all). CONCLUSIONS: Green-light FAF had the highest sensitivity in diagnosis of ODD, while blue-light FAF and NIR provided more information regarding the severity, location, depth, and size of ODD. In eyes that are negative on green-light FAF, EDI-OCT can be performed and provides the highest-resolution characterization of the entire optic disc to rule out ODD.

Pages