July 2019

P
Papadopoulos Z. Aflibercept: A review of its effect on the treatment of exudative age-related macular degeneration. Eur J Ophthalmol 2019;29(4):368-378.Abstract
Considerable improvement has been achieved in the way in which exudative age-related macular degeneration is conventionally treated and in the associated visual outcomes and prognosis, thanks to the agents with effects against vascular endothelial growth factor (anti-VEGF). By comparison to earlier treatment approaches that involved the use of lasers, the anti-VEGF agents have made it possible to accomplish more positive visual and anatomical outcomes in cases of exudative age-related macular degeneration. Indeed, owing to their positive effects, anti-VEGF agents have quickly come to be considered the gold standard for the treatment of wet age-related macular degeneration. Aflibercept, the most recently approved intravitreally administered anti-VEGF, seems to mark another milestone in the treatment of wet age-related macular degeneration. This anti-VEGF agent presents a series of singular pharmacodynamic and pharmacokinetic attributes that provide it a number of biological benefits in relation to the treatment of choroidal neovascularization compared to other agents. These attributes include high level of affinity for the VEGF-A factor, an intravitreal half-life of great length, as well as the ability to serve as an antagonist for other growth factors besides VEGF. The impact of Aflibercept on the manner in which exudative age-related macular degeneration is managed was demonstrated by thoroughly reviewing the related literature. The present review article highlights the pharmacology, pharmacokinetics, safety and effectiveness of this anti-VEGF agent as well as the landmark clinical studies that have been carried out to establish this drug as a gold standard in the therapy of neovascular age-related macular degeneration. In addition, studies regarding the outcomes and effectiveness of the various dosage regimens, either as monotherapy or in combination with other agents, are also reviewed.
Parikh R, Avery RL, Saroj N, Thompson D, Freund BK. Incidence of New Choroidal Neovascularization in Fellow Eyes of Patients With Age-Related Macular Degeneration Treated With Intravitreal Aflibercept or Ranibizumab. JAMA Ophthalmol 2019;Abstract
Importance: Incidence of conversion to neovascular age-related macular degeneration (nAMD) in untreated fellow eyes of patients who are treated for nAMD in 1 eye with anti-vascular endothelial growth factor agents provides important prognostic information to clinically manage patients. Objective: To investigate the association of treatment assignment (intravitreal aflibercept vs ranibizumab) and baseline characteristics with fellow eye conversion to nAMD in the VEGF (Vascular Endothelial Growth Factor) Trap-Eye: Investigation of Efficacy and Safety in Wet AMD (VIEW) studies. Design, Setting, and Participants: This post hoc analysis of the VIEW 1 and VIEW 2 studies (randomized, double-masked, active-controlled, multicenter, 96-week, phase 3 trials comparing the efficacy and safety of intravitreal aflibercept in 2457 patients with treatment-naive eyes with nAMD) analyzed a subgroup of participants treated for nAMD in 1 eye who had untreated fellow eyes without neovascularization at baseline. All participants in the VIEW studies were included in 1 of 4 groups: ranibizumab, 0.5 mg, every 4 weeks; aflibercept, 2 mg, every 4 weeks; aflibercept, 0.5 mg, every 4 weeks; or aflibercept, 2 mg, every 8 weeks after 3 injections at 4-week intervals. Data collection in the VIEW studies occurred from July 2007 to August 2011; the data analysis presented in this report took place from April 2016 to November 2018. Interventions: Patients received no treatment in the fellow eyes unless after conversion to nAMD, when any treatment approved by heath authorities was given per the investigators' discretion. Main Outcomes and Measures: Incidence of conversion to nAMD in patients with untreated fellow eyes that had not had clinical signs of neovascularization at baseline. Results: A total of 1561 participants were included in this analysis. At 96 weeks, 375 patients (24.0%) experienced cases of conversion to neovascular disease in the fellow eye, including 107 of the 399 individuals who received ranibizumab, 0.5 mg, every 4 weeks; 93 of the 387 individuals who received aflibercept, 2 mg, every 4 weeks; 84 of the 387 individuals who received aflibercept, 0.5 mg, every 4 weeks; and 91 of the 388 individuals who received aflibercept, 2 mg, every 8 weeks after 3 doses at 4-week intervals. The rates were 18.1, 16.2, 14.7, and 16.0 per 100 patient-years at risk at week 96, respectively. On multivariate analysis, fellow eye conversion was associated with increasing patient age (per 10 years) at baseline (hazard ratio [HR], 1.20 [95% CI, 1.05-1.36]), female sex (HR, 1.32 [95% CI, 1.06-1.63]), intraretinal fluid in the study eye at baseline (HR, 1.28 [95% CI, 1.02-1.61]), and increasing choroidal neovascularization lesion size (per 10 mm2) in the study eye at baseline (HR, 1.29 [95% CI, 1.06-1.57]). Rates of fellow eye conversion were similar with either of the treatments. Conclusions and Relevance: In this secondary analysis of randomized clinical trial data, patients with active nAMD in 1 eye appeared to have a high risk for fellow eye conversion. Such patients should be monitored closely.
S
Sangaré LO, Yang N, Konstantinou EK, Lu D, Mukhopadhyay D, Young LH, Saeij JPJ. GRA15 Activates the NF-κB Pathway through Interactions with TNF Receptor-Associated Factors. MBio 2019;10(4)Abstract
The protozoan parasite secretes proteins from specialized organelles, the rhoptries, and dense granules, which are involved in the modulation of host cell processes. Dense granule protein GRA15 activates the nuclear factor kappa B (NF-κB) pathway, which plays an important role in cell death, innate immunity, and inflammation. Exactly how GRA15 activates the NF-κB pathway is unknown. Here we show that GRA15 interacts with tumor necrosis factor receptor-associated factors (TRAFs), which are adaptor proteins functioning upstream of the NF-κB transcription factor. We identified several TRAF binding sites in the GRA15 amino acid sequence and showed that these are involved in NF-κB activation. Furthermore, a TRAF2 knockout cell line has impaired GRA15-mediated NF-κB activation. Thus, we determined the mechanism for GRA15-dependent NF-κB activation. The parasite can cause birth defects and severe disease in immunosuppressed patients. Strain differences in pathogenicity exist, and these differences are due to polymorphic effector proteins that secretes into the host cell to coopt host cell functions. The effector protein GRA15 of some strains activates the nuclear factor kappa B (NF-κB) pathway, which plays an important role in cell death, innate immunity, and inflammation. We show that GRA15 interacts with TNF receptor-associated factors (TRAFs), which are adaptor proteins functioning upstream of the NF-κB transcription factor. Deletion of TRAF-binding sites in GRA15 greatly reduces its ability to activate the NF-κB pathway, and TRAF2 knockout cells have impaired GRA15-mediated NF-κB activation. Thus, we determined the mechanism for GRA15-dependent NF-κB activation.
Sauvage F, Fraire JC, Remaut K, Sebag J, Peynshaert K, Harrington M, Van de Velde FJ, Xiong R, Tassignon M-J, Brans T, Braeckmans K, De Smedt SC. Photoablation of Human Vitreous Opacities by Light-Induced Vapor Nanobubbles. ACS Nano 2019;13(7):8401-8416.Abstract
Myopia, diabetes, and aging are the main causes of progressive vitreous collagen aggregation, resulting in vitreous opacities, which can significantly disturb vision. As vitreous opacities, which induce the visual phenomenon of "floaters", are accessible with nanomaterials and light, we propose a nanotechnology-based approach to locally ablate them with highly reduced light energy compared to the more traditional YAG laser therapy. Our strategy relies on the plasmon properties of gold nanoparticles that generate vapor nanobubbles upon pulsed-laser illumination whose mechanical force can ablate vitreous opacities. We designed gold nanoparticles coated with hyaluronic acid (HA), which have excellent diffusional mobility in human vitreous, an essential requirement to reach the vitreous opacities. In addition, we found that HA-coated gold nanoparticles can accumulate extensively on human vitreous opacities that were obtained by vitrectomy from patients with vision-degrading myodesopsia. When subsequently applying nanosecond laser pulses, the collagen aggregates were efficiently destroyed with ∼1000 times less light energy than typically used in YAG laser therapy. This low-energy "floater-specific destruction", which is due to the accumulation of the small gold nanoparticles on the opacities, is attractive, as it may be safer to the surrounding ocular tissues while at the same time being easier and faster to apply compared to YAG laser therapy, where the opacities need to be ablated piece by piece by a tightly focused laser beam. Gold nanoparticle-assisted photoablation may therefore provide a safer, faster, and more reliable destruction of vitreous opacities in the treatment of ophthalmologic diseases.
Shukla S, Mittal SK, Foulsham W, Elbasiony E, Singhania D, Sahu SK, Chauhan SK. Therapeutic efficacy of different routes of mesenchymal stem cell administration in corneal injury. Ocul Surf 2019;Abstract
PURPOSE: Corneal injuries are associated with significant impairment in vision. Mesenchymal stem cells (MSCs) have been shown to limit inflammation and promote tissue repair at the ocular surface. Here, we evaluate the efficacies of different modes of MSC delivery (topical, subconjunctival, intraperitoneal [IP] and intravenous [IV]) to promote tissue repair and restore corneal transparency in a murine model of corneal injury. METHODS: MSCs were purified from the bone marrow of C57BL/6 J mice and expanded using plastic adherence in vitro. Corneal injury was created using an Algerbrush, and 0.5 × 10 MSCs/mouse were administered via topical, subconjunctival, IP or IV routes. Qdot-labeled MSCs were employed to determine the effect of route of administration on corneal and conjunctival MSC frequencies. Corneal opacity scores were calculated using ImageJ. Expression of inflammatory cytokines was quantified by qPCR, and infiltration of CD45 cells was evaluated by flow cytometry. RESULTS: Subconjunctival or IV administration results in increased frequencies of MSCs in ocular surface tissues following corneal injury, relative to topical or intraperitoneal delivery. Subconjunctival or IV administration reduces: (i) corneal opacity, (ii) tissue fibrosis as quantified by α-Sma expression, (iii) the expression of inflammatory cytokines (Il-1β and Tnf-α) and (iv) CD45 inflammatory cell infiltration relative to untreated injured control animals. Administration via subconjunctival or IV routes was observed to accelerate corneal repair by restoring tissue architecture and epithelial integrity. CONCLUSIONS: Our data suggest that subconjunctival or IV delivery of MSCs have superior therapeutic efficacy compared to topical or IP delivery following corneal injury.
T
Thomas D, Singh D. Novel techniques of engineering 3D vasculature tissue for surgical procedures. Am J Surg 2019;218(1):235-236.
U
Uchi S-H, Yanai R, Kobayashi M, Hatano M, Kobayashi Y, Yamashiro C, Nagai T, Tokuda K, Connor KM, Sonoda K-H, Kimura K. Dendritic cells mediate the anti-inflammatory action of omega-3 long-chain polyunsaturated fatty acids in experimental autoimmune uveitis. PLoS One 2019;14(7):e0219405.Abstract
We previously showed that dietary omega (ω)-3 long-chain polyunsaturated fatty acids (LCPUFAs) suppress inflammation in mice with experimental autoimmune uveitis (EAU). We have now investigated the role of antigen presenting cells (APCs) in this action of ω-3 LCPUFAs. C57BL/6 mice were fed a diet supplemented with ω-3 or ω-6 LCPUFAs for 2 weeks, after which splenocytes were isolated from the mice and cocultured with CD4+ T cells isolated from mice with EAU induced by injection of a human interphotoreceptor retinoid-binding protein peptide together with complete Freund's adjuvant. The proliferation of and production of interferon-γ and interleukin-17 by T cells from EAU mice in vitro were attenuated in the presence of splenocytes from ω-3 LCPUFA-fed mice as compared with those from mice fed ω-6 LCPUFAs. Splenocyte fractionation by magnetic-activated cell sorting revealed that, among APCs, dendritic cells (DCs) were the target of ω-3 LCPUFAs. Adoptive transfer of DCs from mice fed ω-3 LCPUFAs attenuated disease progression in EAU mice as well as the production of pro-inflammatory cytokines by T cells isolated from these latter animals. The proliferation of T cells from control Balb/c mice was also attenuated in the presence of DCs from ω-3 LCPUFA-fed mice as compared with those from ω-6 LCPUFA-fed mice. Furthermore, T cell proliferation in such a mixed lymphocyte reaction was inhibited by prior exposure of DCs from mice fed an ω-6 LCPUFA diet to ω-3 LCPUFAs in vitro. Our results thus suggest that DCs mediate the anti-inflammatory action of dietary ω-3 LCPUFAs in EAU.
V
Veronese C, Staurenghi G, Pellegrini M, Maiolo C, Primavera L, Morara M, Armstrong GW, Ciardella AP. MULTIMODAL IMAGING IN VORTEX VEIN VARICES. Retin Cases Brief Rep 2019;13(3):260-265.Abstract
PURPOSE: The aim of this study is to describe the clinical presentation of vortex vein varices with multimodal imaging. METHODS: The authors carried out a retrospective case series of eight patients (7 female, 1 male) with an average age of 60.2 years (min 8, max 84, median 68.5) presenting with vortex vein varices. All patients were evaluated at the Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy and at Luigi Sacco Hospital, University of Milan, Milan, Italy. Patients underwent complete ophthalmologic examinations, including best corrected visual acuity, intraocular pressure, anterior segment, and fundus examination. Imaging studies, including fundus color photography, near-infrared reflectance imaging, fundus autofluorescence, fluorescein angiography, indocyanine green angiography, and spectral-domain enhanced depth imaging optical coherence tomography were also performed. Ultra-widefield fluorescein angiography and ultra-widefield indocyanine angiography using the Heidelberg Retina Angiograph and the Staurenghi 230 SLO Retina Lens were used to demonstrate the disappearance of all retinal lesions when pressure was applied to the globe. RESULTS: All eight cases initially presented to the emergency room. One patient presented secondary to trauma, two patients presented for suspected hemangioma, whereas the other five were referred to the authors' hospitals for suspected retinal lesions. On examination, retinal abnormalities were identified in all 8 patients, with 7 (87.5%) oculus dexter and 1 (12.5%) oculus sinister, and with 1 (12.5%) inferotemporally, 3 (37.5%) superonasally, 3 (37.5%) inferonasally, and 1 (12.5%) inferiorly. Fundus color photography showed an elevated lesion in seven patients and a nonelevated red lesion in one patient. In all patients, near-infrared reflectance imaging showed a hyporeflective lesion in the periphery of the retina. Fundus autofluorescence identified round hypofluorescent rings surrounding weakly hyperfluorescent lesions in all patients. On fluorescein angiography, all lesions were initially hyperfluorescent with a hypofluorescent ring, with the lesion becoming hyperfluorescent after injection of dye. Indocyanine green angiography demonstrated dilation of the vortex vein ampullae in all patients. Spectral-domain enhanced depth imaging optical coherence tomography demonstrated dilated choroidal vessels and a hyporeflective cavity without subretinal fluid in all patients. Ultra-widefield fluorescein angiography and ultra-widefield indocyanine angiography demonstrated disappearance of all retinal lesions when pressure was applied to the globe. Findings are consistent with the diagnosis of vortex vein varix in all eight patients, with six patients (75%) exhibiting a single varix and two patients (25%) exhibiting a double varix. CONCLUSION: The diagnosis of vortex vein varices can be confirmed through clinical examination through the use of digital pressure to the globe during ophthalmoscopic examination. Adjunctive multimodal imaging (fundus color photography, near-infrared reflectance imaging, fundus autofluorescence, fluorescein angiography, indocyanine angiography, and spectral-domain enhanced depth imaging optical coherence tomography) was useful in the diagnosis of vortex vein varices in the authors' clinical cases. However, in more challenging clinical cases, the authors' novel use of the ultra-widefield contact lens for application of ocular pressure with a resulting resolution of the varix proved to be a useful and easy diagnostic imaging method for confirming the presence of vortex vein varices.
Y
Yokomizo H, Maeda Y, Park K, Clermont AC, Hernandez SL, Fickweiler W, Li Q, Wang C-H, Paniagua SM, Simao F, Ishikado A, Sun B, Wu I-H, Katagiri S, Pober DM, Tinsley LJ, Avery RL, Feener EP, Kern TS, Keenan HA, Aiello LP, Sun JK, King GL. Retinol binding protein 3 is increased in the retina of patients with diabetes resistant to diabetic retinopathy. Sci Transl Med 2019;11(499)Abstract
The Joslin Medalist Study characterized people affected with type 1 diabetes for 50 years or longer. More than 35% of these individuals exhibit no to mild diabetic retinopathy (DR), independent of glycemic control, suggesting the presence of endogenous protective factors against DR in a subpopulation of patients. Proteomic analysis of retina and vitreous identified retinol binding protein 3 (RBP3), a retinol transport protein secreted mainly by the photoreceptors, as elevated in Medalist patients protected from advanced DR. Mass spectrometry and protein expression analysis identified an inverse association between vitreous RBP3 concentration and DR severity. Intravitreal injection and photoreceptor-specific overexpression of RBP3 in rodents inhibited the detrimental effects of vascular endothelial growth factor (VEGF). Mechanistically, our results showed that recombinant RBP3 exerted the therapeutic effects by binding and inhibiting VEGF receptor tyrosine phosphorylation. In addition, by binding to glucose transporter 1 (GLUT1) and decreasing glucose uptake, RBP3 blocked the detrimental effects of hyperglycemia in inducing inflammatory cytokines in retinal endothelial and Müller cells. Elevated expression of photoreceptor-secreted RBP3 may have a role in protection against the progression of DR due to hyperglycemia by inhibiting glucose uptake via GLUT1 and decreasing the expression of inflammatory cytokines and VEGF.

Pages