November 2015

Wells JA, Glassman AR, Jampol LM, Aiello LP, Antoszyk AN, Baker CW, Bressler NM, Browning DJ, Connor CG, Elman MJ, Ferris FL, Friedman SM, Melia M, Pieramici DJ, Sun JK, Beck RW, Beck RW. Association of Baseline Visual Acuity and Retinal Thickness With 1-Year Efficacy of Aflibercept, Bevacizumab, and Ranibizumab for Diabetic Macular Edema. JAMA Ophthalmol 2015;:1-8.Abstract

Importance: Comparisons of the relative effect of 3 anti-vascular endothelial growth factor agents to treat diabetic macular edema warrant further assessment. Objective: To provide additional outcomes from a randomized trial evaluating 3 anti-vascular endothelial growth factor agents for diabetic macular edema within subgroups based on baseline visual acuity (VA) and central subfield thickness (CST) as evaluated on optical coherence tomography. Design, Setting, and Participants: Post hoc exploratory analyses were conducted of randomized trial data on 660 adults with diabetic macular edema and decreased VA (Snellen equivalent, approximately 20/32 to 20/320). The original study was conducted between August 22, 2012, and August 28, 2013. Analysis was conducted from January 7 to June 2, 2015. Interventions: Repeated 0.05-mL intravitreous injections of 2.0 mg of aflibercept (224 eyes), 1.25 mg of bevacizumab (218 eyes), or 0.3 mg of ranibizumab (218 eyes) as needed per protocol. Main Outcomes and Measures: One-year VA and CST outcomes within prespecified subgroups based on both baseline VA and CST thresholds, defined as worse (20/50 or worse) or better (20/32 to 20/40) VA and thicker (≥400 µm) or thinner (250 to 399 µm) CST. Results: In the subgroup with worse baseline VA (n = 305), irrespective of baseline CST, aflibercept showed greater improvement than bevacizumab or ranibizumab for several VA outcomes. In the subgroup with better VA and thinner CST at baseline (61-73 eyes across 3 treatment groups), VA outcomes showed little difference between groups; mean change was +7.2, +8.4, and +7.6 letters in the aflibercept, bevacizumab, and ranibizumab groups, respectively. However, in the subgroup with better VA and thicker CST at baseline (31-43 eyes), there was a suggestion of worse VA outcomes in the bevacizumab group; mean change from baseline to 1 year was +9.5, +5.4, and +9.5 letters in the aflibercept, bevacizumab, and ranibizumab groups, respectively, and VA letter score was greater than 84 (approximately 20/20) in 21 of 33 (64%), 7 of 31 (23%), and 21 of 43 (49%) eyes, respectively. The adjusted differences and 95% CIs were 39% (17% to 60%) for aflibercept vs bevacizumab, 25% (5% to 46%) for ranibizumab vs bevacizumab, and 13% (-8% to 35%) for aflibercept vs ranibizumab. Conclusions and Relevance: These post hoc secondary findings suggest that for eyes with better initial VA and thicker CST, some VA outcomes may be worse in the bevacizumab group than in the aflibercept and ranibizumab groups. Given the exploratory nature of these analyses and the small sample size within subgroups, caution is suggested when using the data to guide treatment considerations for patients. Trial Registration: Identifier: NCT01627249.

Yee KMP, Feener EP, Madigan M, Jackson NJ, Gao B-B, Ross-Cisneros FN, Provis J, Aiello LP, Sadun AA, Sebag J. Proteomic Analysis of Embryonic and Young Human Vitreous. Invest Ophthalmol Vis Sci 2015;56(12):7036-42.Abstract

PURPOSE: The proteomic profile of vitreous from second-trimester human embryos and young adults was characterized using mass spectrometry and analyzed for changes in protein levels that may relate to structural changes occurring during this time. This vitreous proteome was compared to previous reports to confirm proteins already identified and reveal novel ones. METHODS: Vitreous from 17 human embryos aged 14 to 20 weeks gestation (WG) and from a 12-, a 14-, a 15-, and a 28-year-old was individually analyzed using tandem mass spectrometry-based proteomics. Peptide spectral count associations with embryonic age were assessed using a general linear model of fold changes and Spearman's rank correlation. Differences between embryonic and young adult vitreous proteomes were also compared. Immunohistochemistry was used to evaluate three proteins in five additional fetal (10-18 WG) human eyes. RESULTS: There were 1217 proteins identified in fetal and young adult human vitreous, 206 after quantile normalization and variance filtering. In embryos, the peptide counts of 37 proteins changed significantly from 14 to 20 WG: 75.7% increased, 24.3% decreased. Immunohistochemistry confirmed the absence of clusterin and cadherin in 10 and 14 WG eyes and their presence at 18 WG. Comparing embryonic to young adult vitreous, 47 proteins were significantly higher or lower. A total of 768 proteins not previously identified in the literature are presented. CONCLUSIONS: Proteins previously unreported in the human vitreous were identified. The human vitreous proteome undergoes significant changes during embryogenesis and young adulthood. A number of protein levels change considerably during the second trimester, with the majority decreasing.