Barhoumi A, Salvador-Culla B, Kohane DS. Nonlinear Optics: NIR-Triggered Drug Delivery by Collagen-Mediated Second Harmonic Generation (Adv. Healthcare Mater. 8/2015). Adv Healthc Mater 2015;4(8):1108.Abstract

In the study presented by D. S. Kohane and co-workers on page 1159, fluorescein molecules are initially bound to collagen fibers through UV-sensitive bonds. Collagen fibers are exposed to NIR light, which is upconverted to UV light through second harmonic generation. The UV-sensitive bonds absorb the upconverted UV light and undergo an irreversible cleavage releasing the fluorescein molecules.

Barhoumi A, Salvador-Culla B, Kohane DS. NIR-Triggered Drug Delivery by Collagen-Mediated Second Harmonic Generation. Adv Healthc Mater 2015;4(8):1159-63.Abstract

Second harmonic generation is a process through which nonlinear materials such as collagen can absorb two photons and scatter one with twice the energy. Collagen upconverts 730 nm (near-IR) to 365 nm (UV) through second harmonic generation, which cleaves a molecule bound to collagen via a UV-sensitive linker.

Bauer C, Yazzolino L, Hirsch G, Cattaneo Z, Vecchi T, Merabet LB. Neural correlates associated with superior tactile symmetry perception in the early blind. Cortex 2015;63:104-17.Abstract

Symmetry is an organizational principle that is ubiquitous throughout the visual world. However, this property can also be detected through non-visual modalities such as touch. The role of prior visual experience on detecting tactile patterns containing symmetry remains unclear. We compared the behavioral performance of early blind and sighted (blindfolded) controls on a tactile symmetry detection task. The tactile patterns used were similar in design and complexity as in previous visual perceptual studies. The neural correlates associated with this behavioral task were identified with functional magnetic resonance imaging (fMRI). In line with growing evidence demonstrating enhanced tactile processing abilities in the blind, we found that early blind individuals showed significantly superior performance in detecting tactile symmetric patterns compared to sighted controls. Furthermore, comparing patterns of activation between these two groups identified common areas of activation (e.g. superior parietal cortex) but key differences also emerged. In particular, tactile symmetry detection in the early blind was also associated with activation that included peri-calcarine cortex, lateral occipital (LO), and middle temporal (MT) cortex, as well as inferior temporal and fusiform cortex. These results contribute to the growing evidence supporting superior behavioral abilities in the blind, and the neural correlates associated with crossmodal neuroplasticity following visual deprivation.

Bauer CM, Heidary G, Koo B-B, Killiany RJ, Bex P, Merabet LB. Abnormal white matter tractography of visual pathways detected by high-angular-resolution diffusion imaging (HARDI) corresponds to visual dysfunction in cortical/cerebral visual impairment. J AAPOS 2014;18(4):398-401.Abstract
Cortical (cerebral) visual impairment (CVI) is characterized by visual dysfunction associated with damage to the optic radiations and/or visual cortex. Typically it results from pre- or perinatal hypoxic damage to postchiasmal visual structures and pathways. The neuroanatomical basis of this condition remains poorly understood, particularly with regard to how the resulting maldevelopment of visual processing pathways relates to observations in the clinical setting. We report our investigation of 2 young adults diagnosed with CVI and visual dysfunction characterized by difficulties related to visually guided attention and visuospatial processing. Using high-angular-resolution diffusion imaging (HARDI), we characterized and compared their individual white matter projections of the extrageniculo-striate visual system with a normal-sighted control. Compared to a sighted control, both CVI cases revealed a striking reduction in association fibers, including the inferior frontal-occipital fasciculus as well as superior and inferior longitudinal fasciculi. This reduction in fibers associated with the major pathways implicated in visual processing may provide a neuroanatomical basis for the visual dysfunctions observed in these patients.
Bauskar A, Mack WJ, Mauris J, Argüeso P, Heur M, Nagel BA, Kolar GR, Gleave ME, Nakamura T, Kinoshita S, Moradian-Oldak J, Panjwani N, Pflugfelder SC, Wilson MR, Fini EM, Jeong S. Clusterin Seals the Ocular Surface Barrier in Mouse Dry Eye. PLoS One 2015;10(9):e0138958.Abstract

Dry eye is a common disorder caused by inadequate hydration of the ocular surface that results in disruption of barrier function. The homeostatic protein clusterin (CLU) is prominent at fluid-tissue interfaces throughout the body. CLU levels are reduced at the ocular surface in human inflammatory disorders that manifest as severe dry eye, as well as in a preclinical mouse model for desiccating stress that mimics dry eye. Using this mouse model, we show here that CLU prevents and ameliorates ocular surface barrier disruption by a remarkable sealing mechanism dependent on attainment of a critical all-or-none concentration. When the CLU level drops below the critical all-or-none threshold, the barrier becomes vulnerable to desiccating stress. CLU binds selectively to the ocular surface subjected to desiccating stress in vivo, and in vitro to the galectin LGALS3, a key barrier component. Positioned in this way, CLU not only physically seals the ocular surface barrier, but it also protects the barrier cells and prevents further damage to barrier structure. These findings define a fundamentally new mechanism for ocular surface protection and suggest CLU as a biotherapeutic for dry eye.

Behlau I, Martin KV, Martin JN, Naumova EN, Cadorette JJ, Sforza TJ, Pineda R, Dohlman CH. Infectious endophthalmitis in Boston keratoprosthesis: incidence and prevention. Acta Ophthalmol 2014;92(7):e546-55.Abstract

PURPOSE: To determine the cumulative worldwide incidence of infectious endophthalmitis and associated vision loss after Boston keratoprosthesis (B-KPro) Type I/II implantation and to propose both safe and inexpensive prophylactic antibiotic regimens. METHODS: Two retrospective methods were used to determine the incidence, visual outcomes and aetiologies of infectious endophthalmitis associated with the B-KPro divided per decade: (i) systematic review of the literature from 1990 through January 2013 and (ii) a surveillance survey sent to all surgeons who implanted B-KPros through 2010 with 1-year minimum follow-up. In addition, a single-Boston surgeon 20-year experience was examined. RESULTS: From 1990 through 2010, there were 4729 B-KPros implanted worldwide by 209 U.S. surgeons and 159 international surgeons. The endophthalmitis cumulative mean incidence declined from 12% during its first decade of use to about 3% during its second decade in the Unites States and about 5% internationally during the second decade. There remains a large incidence range both in the United States (1-12.5%) and internationally (up to 17%). Poor compliance with daily topical antibiotics is an important risk factor. While Gram-positive organisms remained dominant, fungal infections emerged during the second decade. CONCLUSIONS: Daily prophylactic topical antibiotics have dramatically reduced the endophthalmitis incidence. Although Gram-positive organisms are the most common aetiology, antimicrobials must be inclusive of Gram-negative organisms. Selection of prophylactic regimens should be tailored to local antibiotic susceptibility patterns, be cost-effective, and should not promote the emergence of antimicrobial resistance. An example of a broad-spectrum, low-cost prophylactic option for non-autoimmune patients includes trimethoprim/polymyxinB once daily.

Beier KT, Mundell NA, Pan AY, Cepko CL. Anterograde or Retrograde Transsynaptic Circuit Tracing in Vertebrates with Vesicular Stomatitis Virus Vectors. Curr Protoc Neurosci 2016;74:1.26.1-1.26.27.Abstract

Viruses have been used as transsynaptic tracers, allowing one to map the inputs and outputs of neuronal populations, due to their ability to replicate in neurons and transmit in vivo only across synaptically connected cells. To date, their use has been largely restricted to mammals. In order to explore the use of such viruses in an expanded host range, we tested the transsynaptic tracing ability of recombinant vesicular stomatitis virus (rVSV) vectors in a variety of organisms. Successful infection and gene expression were achieved in a wide range of organisms, including vertebrate and invertebrate model organisms. Moreover, rVSV enabled transsynaptic tracing of neural circuitry in predictable directions dictated by the viral envelope glycoprotein (G), derived from either VSV or rabies virus (RABV). Anterograde and retrograde labeling, from initial infection and/or viral replication and transmission, was observed in Old and New World monkeys, seahorses, jellyfish, zebrafish, chickens, and mice. These vectors are widely applicable for gene delivery, afferent tract tracing, and/or directional connectivity mapping. Here, we detail the use of these vectors and provide protocols for propagating virus, changing the surface glycoprotein, and infecting multiple organisms using several injection strategies. © 2016 by John Wiley & Sons, Inc.

Benaglio P, San Jose PF, Avila-Fernandez A, Ascari G, Harper S, Manes G, Ayuso C, Hamel C, Berson EL, Rivolta C. Mutational screening of splicing factor genes in cases with autosomal dominant retinitis pigmentosa. Mol Vis 2014;20:843-51.Abstract

PURPOSE: Mutations in genes encoding proteins from the tri-snRNP complex of the spliceosome account for more than 12% of cases of autosomal dominant retinitis pigmentosa (adRP). Although the exact mechanism by which splicing factor defects trigger photoreceptor death is not completely clear, their role in retinitis pigmentosa has been demonstrated by several genetic and functional studies. To test for possible novel associations between splicing factors and adRP, we screened four tri-snRNP splicing factor genes (EFTUD2, PRPF4, NHP2L1, and AAR2) as candidate disease genes. METHODS: We screened up to 303 patients with adRP from Europe and North America who did not carry known RP mutations. Exon-PCR and Sanger methods were used to sequence the NHP2L1 and AAR2 genes, while the sequences of EFTUD2 and PRPF4 were obtained by using long-range PCRs spanning coding and non-coding regions followed by next-generation sequencing. RESULTS: We detected novel missense changes in individual patients in the sequence of the genes PRPF4 and EFTUD2, but the role of these changes in relationship to disease could not be verified. In one other patient we identified a novel nucleotide substitution in the 5' untranslated region (UTR) of NHP2L1, which did not segregate with the disease in the family. CONCLUSIONS: The absence of clearly pathogenic mutations in the candidate genes screened in our cohort suggests that EFTUD2, PRPF4, NHP2L1, and AAR2 are either not involved in adRP or are associated with the disease in rare instances, at least as observed in this study in patients of European and North American origin.

Bennett J, Wellman J, Marshall KA, McCague S, Ashtari M, DiStefano-Pappas J, Elci OU, Chung DC, Sun J, Wright FJ, Cross DR, Aravand P, Cyckowski LL, Bennicelli JL, Mingozzi F, Auricchio A, Pierce EA, Ruggiero J, Leroy BP, Simonelli F, High KA, Maguire AM. Safety and durability of effect of contralateral-eye administration of AAV2 gene therapy in patients with childhood-onset blindness caused by RPE65 mutations: a follow-on phase 1 trial. Lancet 2016;Abstract

BACKGROUND: Safety and efficacy have been shown in a phase 1 dose-escalation study involving a unilateral subretinal injection of a recombinant adeno-associated virus (AAV) vector containing the RPE65 gene (AAV2-hRPE65v2) in individuals with inherited retinal dystrophy caused by RPE65 mutations. This finding, along with the bilateral nature of the disease and intended use in treatment, prompted us to determine the safety of administration of AAV2-hRPE65v2 to the contralateral eye in patients enrolled in the phase 1 study. METHODS: In this follow-on phase 1 trial, one dose of AAV2-hRPE65v2 (1·5 × 10(11) vector genomes) in a total volume of 300 μL was subretinally injected into the contralateral, previously uninjected, eyes of 11 children and adults (aged 11-46 years at second administration) with inherited retinal dystrophy caused by RPE65 mutations, 1·71-4·58 years after the initial subretinal injection. We assessed safety, immune response, retinal and visual function, functional vision, and activation of the visual cortex from baseline until 3 year follow-up, with observations ongoing. This study is registered with, number NCT01208389. FINDINGS: No adverse events related to the AAV were reported, and those related to the procedure were mostly mild (dellen formation in three patients and cataracts in two). One patient developed bacterial endophthalmitis and was excluded from analyses. We noted improvements in efficacy outcomes in most patients without significant immunogenicity. Compared with baseline, pooled analysis of ten participants showed improvements in mean mobility and full-field light sensitivity in the injected eye by day 30 that persisted to year 3 (mobility p=0·0003, white light full-field sensitivity p<0·0001), but no significant change was seen in the previously injected eyes over the same time period (mobility p=0·7398, white light full-field sensitivity p=0·6709). Changes in visual acuity from baseline to year 3 were not significant in pooled analysis in the second eyes or the previously injected eyes (p>0·49 for all time-points compared with baseline). INTERPRETATION: To our knowledge, AAV2-hRPE65v2 is the first successful gene therapy administered to the contralateral eye. The results highlight the use of several outcome measures and help to delineate the variables that contribute to maximal benefit from gene augmentation therapy in this disease. FUNDING: Center for Cellular and Molecular Therapeutics at The Children's Hospital of Philadelphia, Spark Therapeutics, US National Institutes of Health, Foundation Fighting Blindness, Institute for Translational Medicine and Therapeutics, Research to Prevent Blindness, Center for Advanced Retinal and Ocular Therapeutics, Mackall Foundation Trust, F M Kirby Foundation, and The Research Foundation-Flanders.

Benowitz LI, He Z, Goldberg JL. Reaching the brain: Advances in optic nerve regeneration. Exp Neurol 2017;287(Pt 3):365-373.Abstract

The optic nerve has been widely used to investigate factors that regulate axon regeneration in the mammalian CNS. Although retinal ganglion cells (RGCs), the projection neurons of the eye, show little capacity to regenerate their axons following optic nerve damage, studies spanning the 20(th) century showed that some RGCs can regenerate axons through a segment of peripheral nerve grafted to the optic nerve. More recently, some degree of regeneration has been achieved through the optic nerve itself by factors associated with intraocular inflammation (oncomodulin) or by altering levels of particular transcription factors (Klf-4, -9, c-myc), cell-intrinsic suppressors of axon growth (PTEN, SOCS3), receptors to cell-extrinsic inhibitors of axon growth (Nogo receptor, LAR, PTP-σ) or the intracellular signaling pathway activated by these receptors (RhoA). Other regulators of regeneration and cell survival continue to be identified in this system at a rapid pace. Combinatorial treatments that include two or more of these factors enable some retinal ganglion cells to regenerate axons from the eye through the entire length of the optic nerve and across the optic chiasm. In some cases, regenerating axons have been shown to innervate the appropriate central target areas and elicit postsynaptic responses. Many discoveries made in this system have been found to enhance axon regeneration after spinal cord injury. Thus, progress in optic nerve regeneration holds promise not only for visual restoration but also for improving outcome after injury to other parts of the mature CNS.

Berry RH, Qu J, John SWM, Howell GR, Jakobs TC. Synapse Loss and Dendrite Remodeling in a Mouse Model of Glaucoma. PLoS One 2015;10(12):e0144341.Abstract

It has been hypothesized that synaptic pruning precedes retinal ganglion cell degeneration in glaucoma, causing early dysfunction to retinal ganglion cells. To begin to assess this, we studied the excitatory synaptic inputs to individual ganglion cells in normal mouse retinas and in retinas with ganglion cell degeneration from glaucoma (DBA/2J), or following an optic nerve crush. Excitatory synapses were labeled by AAV2-mediated transfection of ganglion cells with PSD-95-GFP. After both insults the linear density of synaptic inputs to ganglion cells decreased. In parallel, the dendritic arbors lost complexity. We did not observe any cells that had lost dendritic synaptic input while preserving a normal or near-normal morphology. Within the temporal limits of these observations, dendritic remodeling and synapse pruning thus appear to occur near-simultaneously.

Besner S, Scarcelli G, Pineda R, Yun S-H. In Vivo Brillouin Analysis of the Aging Crystalline Lens. Invest Ophthalmol Vis Sci 2016;57(13):5093-5100.Abstract

Purpose: To analyze the age dependence of the longitudinal modulus of the crystalline lens in vivo using Brillouin scattering data in healthy subjects. Methods: Brillouin scans were performed along the crystalline lens in 56 eyes from 30 healthy subjects aged from 19 to 63 years. Longitudinal elastic modulus was acquired along the sagittal axis of the lens with a transverse and axial resolution of 4 and 60 μm, respectively. The relative lens stiffness was computed, and correlations with age were analyzed. Results: Brillouin axial profiles revealed nonuniform longitudinal modulus within the lens, increasing from a softer periphery toward a stiffer central plateau at all ages. The longitudinal modulus at the central plateau showed no age dependence in a range of 19 to 45 years and a slight decrease with age from 45 to 63 years. A significant intersubject variability was observed in an age-matched analysis. Importantly, the extent of the central stiff plateau region increased steadily over age from 19 to 63 years. The slope of change in Brillouin modulus in the peripheral regions were nearly age-invariant. Conclusions: The adult human lens showed no measurable age-related increase in the peak longitudinal modulus. The expansion of the stiff central region of the lens is likely to be the major contributing factor to age-related lens stiffening. Brillouin microscopy may be useful in characterizing the crystalline lens for the optimization of surgical or pharmacological treatments aimed at restoring accommodative power.

Bingham CM, Sivak-Callcott JA, Gurka MJ, Nguyen J, Hogg JP, Feldon SE, Fay A, Seah L-L, Strianese D, Durairaj VD, Uddin J, Devoto MH, Harris M, Saunders J, Osaki TH, Looi A, Teo L, Davies BW, Elefante A, Shen S, Realini T, Fischer W, Kazim M. Axial Globe Position Measurement: A Prospective Multicenter Study by the International Thyroid Eye Disease Society. Ophthal Plast Reconstr Surg 2016;32(2):106-12.Abstract

PURPOSE: Identify a reproducible measure of axial globe position (AGP) for multicenter studies on patients with thyroid eye disease (TED). METHODS: This is a prospective, international, multicenter, observational study in which 3 types of AGP evaluation were examined: radiologic, clinical, and photographic. In this study, CT was the modality to which all other methods were compared. CT AGP was measured from an orthogonal line between the anterior lateral orbital rims to the cornea. All CT measurements were made at a single institution by 3 individual clinicians. Clinical evaluation was performed with exophthalmometry. Three clinicians from each clinical site assessed AGP with 3 different exophthalmometers and horizontal palpebral width using a ruler. Each physician made 3 separate measurements with each type of exophthalmometer not in succession. All photographic measurements were made at a single institution. AGP was measured from lateral photographs in which a standard marker was placed at the anterior lateral orbital rim. Horizontal and vertical palpebral fissure were measured from frontal photographs. Three trained readers measured 3 separate times not in succession. Exophthalmometry and photography method validity was assessed by agreement with CT (mean differences calculation, intraclass correlation coefficients [ICCs], Bland-Altman figures). Correlation between palpebral fissure and CT AGP was assessed with Pearson correlation. Intraclinician and interclinician reliability was evaluated using ICCs. RESULTS: Sixty-eight patients from 7 centers participated. CT mean AGP was 21.37 mm (15.96-28.90 mm) right and 21.22 mm (15.87-28.70 mm) left (ICC 0.996 and 0.995). Exophthalmometry AGP fell between 18 mm and 25 mm. Intraclinician agreement across exophthalmometers was ideal (ICC 0.948-0.983). Agreement between clinicians was greater than 0.85 for all upright exophthalmometry measurements. Photographic mean AGP was 20.47 mm (10.92-30.88 mm) right and 20.30 mm (8.61-28.72 mm) left. Intrareader and interreader agreement was ideal (ICC 0.991-0.989). All exophthalmometers' mean differences from CT ranged between -0.06 mm (±1.36 mm) and 0.54 mm (±1.61 mm); 95% confidence interval fell within 1 mm. Magnitude of AGP did not affect exophthalmometry validity. Oculus best estimated CT AGP but differences from other exophthalmometers were not clinically meaningful in upright measurements. Photographic AGP (right ICC = 0.575, left ICC = 0.355) and palpebral fissure do not agree with CT. CONCLUSIONS: Upright clinical exophthalmometry accurately estimates CT AGP in TED. AGP measurement was reliably reproduced by the same clinician and between clinicians at multiple institutions using the protocol in this study. These findings allow reliable measurement of AGP that will be of considerable value in future outcome studies.

Birnbaum FA, Hamrah P, Jacobs DS, Song BJ. Acquired Corneal Neuropathy and Photoallodynia Associated With Malposition of an Ex-PRESS Shunt. J Glaucoma 2017;26(1):e19-e21.Abstract

PURPOSE: Corneal neuropathy is a recently described disease process that is not well understood and is likely underdiagnosed as a result. This is the first reported case of an acquired corneal neuropathy associated with malposition of an Ex-PRESS shunt. METHODS: A single case report. RESULTS: We report the case of a 50-year-old man with a history of multiple procedures for glaucoma who subsequently developed photoallodynia and corneal neuropathy in association with malposition of an Ex-PRESS shunt in the peripheral cornea. Laser confocal microscopy (HRT3/RCM) of the cornea showed the presence of neuromas, decreased nerve density, and a significant increase of dendritiform immune cells consistent with our diagnosis. Initial treatment with steroid pulse therapy did not result in decreased inflammation or symptomatic improvement leading to surgical explantation of the shunt. One month after surgery, there was noticeable improvement in the patient's pain and photoallodynia (approximately 40%) as well as the abnormalities seen on confocal microscopy. CONCLUSIONS: We hypothesize that poor Ex-PRESS shunt positioning can act as a nidus for corneal inflammation, resulting in corneal neuropathy and lowering of the nociception threshold.

Birsner AE, Benny O, D'Amato RJ. The corneal micropocket assay: a model of angiogenesis in the mouse eye. J Vis Exp 2014;(90)Abstract

The mouse corneal micropocket assay is a robust and quantitative in vivo assay for evaluating angiogenesis. By using standardized slow-release pellets containing specific growth factors that trigger blood vessel growth throughout the naturally avascular cornea, angiogenesis can be measured and quantified. In this assay the angiogenic response is generated over the course of several days, depending on the type and dose of growth factor used. The induction of neovascularization is commonly triggered by either basic fibroblast growth factor (bFGF) or vascular endothelial growth factor (VEGF). By combining these growth factors with sucralfate and hydron (poly-HEMA (poly(2-hydroxyethyl methacrylate))) and casting the mixture into pellets, they can be surgically implanted in the mouse eye. These uniform pellets slowly-release the growth factors over five or six days (bFGF or VEGF respectively) enabling sufficient angiogenic response required for vessel area quantification using a slit lamp. This assay can be used for different applications, including the evaluation of angiogenic modulator drugs or treatments as well as comparison between different genetic backgrounds affecting angiogenesis. A skilled investigator after practicing this assay can implant a pellet in less than 5 min per eye.

Bispo PJM, Haas W, Gilmore MS. Biofilms in infections of the eye. Pathogens 2015;4(1):111-36.Abstract

The ability to form biofilms in a variety of environments is a common trait of bacteria, and may represent one of the earliest defenses against predation. Biofilms are multicellular communities usually held together by a polymeric matrix, ranging from capsular material to cell lysate. In a structure that imposes diffusion limits, environmental microgradients arise to which individual bacteria adapt their physiologies, resulting in the gamut of physiological diversity. Additionally, the proximity of cells within the biofilm creates the opportunity for coordinated behaviors through cell-cell communication using diffusible signals, the most well documented being quorum sensing. Biofilms form on abiotic or biotic surfaces, and because of that are associated with a large proportion of human infections. Biofilm formation imposes a limitation on the uses and design of ocular devices, such as intraocular lenses, posterior contact lenses, scleral buckles, conjunctival plugs, lacrimal intubation devices and orbital implants. In the absence of abiotic materials, biofilms have been observed on the capsule, and in the corneal stroma. As the evidence for the involvement of microbial biofilms in many ocular infections has become compelling, developing new strategies to prevent their formation or to eradicate them at the site of infection, has become a priority.

Bleier BS, Healy DY, Chhabra N, Freitag S. Compartmental endoscopic surgical anatomy of the medial intraconal orbital space. Int Forum Allergy Rhinol 2014;4(7):587-91.Abstract

BACKGROUND: Surgical management of intraconal pathology represents the next frontier in endoscopic endonasal surgery. Despite this, the medial intraconal space remains a relatively unexplored region, secondary to its variable and technically demanding anatomy. The purpose of this study is to define the neurovascular structures in this region and introduce a compartmentalized approach to enhance surgical planning. METHODS: This study was an institutional review board (IRB)-exempt endoscopic anatomic study in 10 cadaveric orbits. After dissection of the medial intraconal space, the pattern and trajectory of the oculomotor nerve and ophthalmic arterial arborizations were analyzed. The position of all vessels as well as the length of the oculomotor trunk and branches relative to the sphenoid face were calculated. RESULTS: A mean of 1.5 arterial branches were identified (n = 15; range, 1-4) at a mean of 8.8 mm from the sphenoid face (range, 4-15 mm). The majority of the arteries (n = 7) inserted adjacent to the midline of medial rectus. The oculomotor nerve inserted at the level of the sphenoid face and arborized with a large proximal trunk 5.5 ± 1.1 mm in length and multiple branches extending 13.2 ± 2.7 mm from the sphenoid face. The most anterior nerve and vascular pedicle were identified at 17.0 and 15.0 mm from the sphenoid face, respectively. CONCLUSION: The neurovascular supply to the medial rectus muscle describes a varied but predictable pattern. This data allows the compartmentalization of the medial intraconal space into 3 zones relative to the neurovascular supply. These zones inform the complexity of the dissection and provide a guideline for safe medial rectus retraction relative to the fixed landmark of the sphenoid face.

Bleier BS, Castelnuovo P, Battaglia P, Turri-Zanoni M, Dallan I, Metson R, Sedaghat AR, Stefko TS, Gardner PA, Snyderman CH, Nogueira JF, Ramakrishnan VR, Muscatello L, Lenzi R, Freitag S. Endoscopic endonasal orbital cavernous hemangioma resection: global experience in techniques and outcomes. Int Forum Allergy Rhinol 2015;Abstract

BACKGROUND: Endoscopic orbital surgery represents the next frontier in endonasal surgery. The current literature is largely composed of small, heterogeneous, case series with little consensus regarding optimal techniques. The purpose of this study was to combine the experience of multiple international centers to create a composite of the global experience on the endoscopic management of a single type of tumor, the orbital cavernous hemangioma (OCH). METHODS: This was a retrospective study of techniques for endoscopic OCH resection from 6 centers on 3 continents. Only primary data from strictly endoscopic resection of OCHs were included. Responses were analyzed to qualitatively identify points of both consensus and variability among the different groups. RESULTS: Data for a total of 23 patients, 10 (43.5%) male and 13 (56.5%) female were collected. The majority of lesions were intraconal (60.9%). The mean ± standard deviation (SD) surgical time was 150.7 ± 75.0 minutes with a mean blood loss of 82.7 ± 49.6 mL. Binarial approaches (26.1%) were used exclusively in the setting of intraconal lesions, which were associated with a higher rate of incomplete resection (31.3%), postoperative diplopia (25.0%), and the need for reconstruction (37.5%) than extraconal lesions. Orthotropia and symmetric orbital appearance were achieved in 60.9% and 78.3% of cases, respectively. CONCLUSION: Extraconal lesions were managed similarly; however, greater variability was evident for intraconal lesions. These included the laterality and number of hands in the approach, methods of medial rectus retraction, and the need for reconstruction. The increased technical complexity and disparity of techniques in addressing intraconal OCHs suggests that continued research into the optimal management of this subclass of lesions is of significant priority.

Boonsopon S, Maghsoudlou A, Kombo NE, Foster SC. A therapeutic trial of valganciclovir in patients with uveitis and positive Epstein-Barr virus early antigen D IgG titers. Eur J Ophthalmol 2015;26(1):30-5.Abstract

PURPOSE: To evaluate the effectiveness of a therapeutic trial of valganciclovir in patients with uveitis with positive Epstein-Barr virus early antigen D immunoglobulin G titers (EBV EA-D). METHODS: We performed a retrospective chart review of 14 patients at the Massachusetts Eye Research and Surgery Institution who had uveitis with positive EBV EA-D but negative studies for all other causes of uveitis and were treated with valganciclovir 450 mg twice a day or valganciclovir 900 mg twice a day between January 2010 and August 2014. RESULTS: Nine of 14 patients, who had presumed EBV reactivation with associated intraocular inflammation, were successfully treated with valganciclovir: 3 of these were treated with valganciclovir 450 mg twice a day and 6 were treated with valganciclovir 900 mg twice a day. Five of 14 patients failed to respond to valganciclovir with persistent inflammation after at least 2 weeks of valganciclovir therapy, and were subsequently treated with immunomodulatory therapy to control inflammation. CONCLUSIONS: Uveitis can be caused by EBV infection/reactivation. A therapeutic trial with valganciclovir 450 mg twice a day for 1 month in patients with uveitis with positive EBV EA antibody may be beneficial.

Borkar DS, Veldman P, Colby KA. Treatment of Fuchs Endothelial Dystrophy by Descemet Stripping Without Endothelial Keratoplasty. Cornea 2016;35(10):1267-73.Abstract

PURPOSE: To evaluate the effect of deliberate removal of the central Descemet membrane on endothelial function and morphology in patients with Fuchs endothelial dystrophy (FED) and cataract undergoing phacoemulsification. METHODS: In this retrospective case series, patients with FED and visually significant cataract underwent phacoemulsification in an academic cornea practice in Boston, MA. Four millimeters of the central Descemet membrane was stripped and removed after intraocular lens insertion. Vision, corneal pachymetry, and confocal imaging of the endothelial anatomy were performed before surgery and at 1, 3, 6, and 12 months after surgery. Patients were classified as fast responders, responders, slow responders, and nonresponders on the basis of postoperative time to resolution of corneal edema with visible central endothelial mosaic. RESULTS: Eleven patients (13 eyes) aged 51 to 91 years were included in the study. No eyes had countable central endothelial cells by confocal imaging before surgery. Preoperative visual acuity ranged from 20/25 to 20/400. All corneas showed stromal and microcystic edema in the area of Descemet stripping at days 1 and 7 after surgery. Four eyes demonstrated resolution of corneal edema with visible central endothelial cell mosaic (range: 410-864 cells/mm) by postoperative month 1 with visual acuity ranging between 20/25 and 20/40. Four additional eyes demonstrated a similar response by postoperative month 3 and an additional 2 eyes had resolution of corneal edema with an intact central endothelial mosaic at postoperative month 6 or later. Cell counts (range: 428-864 cells/mm) were maintained in all 10 responders at the last follow-up visit (range: postoperative months 6-24). Final vision ranged from 20/15 to 20/20 in these 10 eyes with the exception of 2 eyes with retinal pathology. Three eyes required endothelial keratoplasty. CONCLUSIONS: Repopulation of the central corneal endothelium with corneal deturgescence can occur after deliberate central Descemet stripping in patients with FED who underwent cataract removal. This may offer a novel treatment for patients with FED that could reduce the need for endothelial transplantation. Further studies are needed to delineate the optimal patient population for Descemet stripping because not all patients will respond to this intervention.