Reaching the brain: Advances in optic nerve regeneration.

Citation:

Benowitz LI, He Z, Goldberg JL. Reaching the brain: Advances in optic nerve regeneration. Exp Neurol 2017;287(Pt 3):365-373.

Date Published:

2017 Jan

Abstract:

The optic nerve has been widely used to investigate factors that regulate axon regeneration in the mammalian CNS. Although retinal ganglion cells (RGCs), the projection neurons of the eye, show little capacity to regenerate their axons following optic nerve damage, studies spanning the 20(th) century showed that some RGCs can regenerate axons through a segment of peripheral nerve grafted to the optic nerve. More recently, some degree of regeneration has been achieved through the optic nerve itself by factors associated with intraocular inflammation (oncomodulin) or by altering levels of particular transcription factors (Klf-4, -9, c-myc), cell-intrinsic suppressors of axon growth (PTEN, SOCS3), receptors to cell-extrinsic inhibitors of axon growth (Nogo receptor, LAR, PTP-σ) or the intracellular signaling pathway activated by these receptors (RhoA). Other regulators of regeneration and cell survival continue to be identified in this system at a rapid pace. Combinatorial treatments that include two or more of these factors enable some retinal ganglion cells to regenerate axons from the eye through the entire length of the optic nerve and across the optic chiasm. In some cases, regenerating axons have been shown to innervate the appropriate central target areas and elicit postsynaptic responses. Many discoveries made in this system have been found to enhance axon regeneration after spinal cord injury. Thus, progress in optic nerve regeneration holds promise not only for visual restoration but also for improving outcome after injury to other parts of the mature CNS.

Last updated on 02/03/2017