Temporal stability of visually selective responses in intracranial field potentials recorded from human occipital and temporal lobes

Citation:

Bansal AK, Singer JM, Anderson WS, Golby A, Madsen JR, Kreiman G. Temporal stability of visually selective responses in intracranial field potentials recorded from human occipital and temporal lobes. J Neurophysiol 2012;108(11):3073-86.

Date Published:

2012 Dec

Abstract:

The cerebral cortex needs to maintain information for long time periods while at the same time being capable of learning and adapting to changes. The degree of stability of physiological signals in the human brain in response to external stimuli over temporal scales spanning hours to days remains unclear. Here, we quantitatively assessed the stability across sessions of visually selective intracranial field potentials (IFPs) elicited by brief flashes of visual stimuli presented to 27 subjects. The interval between sessions ranged from hours to multiple days. We considered electrodes that showed robust visual selectivity to different shapes; these electrodes were typically located in the inferior occipital gyrus, the inferior temporal cortex, and the fusiform gyrus. We found that IFP responses showed a strong degree of stability across sessions. This stability was evident in averaged responses as well as single-trial decoding analyses, at the image exemplar level as well as at the category level, across different parts of visual cortex, and for three different visual recognition tasks. These results establish a quantitative evaluation of the degree of stationarity of visually selective IFP responses within and across sessions and provide a baseline for studies of cortical plasticity and for the development of brain-machine interfaces.

See also: December 2012, All, 2012
Last updated on 12/11/2018