Fadlallah A, Zhu H, Arafat S, Kochevar I, Melki S, Ciolino JB. Corneal Resistance to Keratolysis After Collagen Crosslinking With Rose Bengal and Green Light. Invest Ophthalmol Vis Sci 2016;57(15):6610-6614.Abstract

Purpose: The purpose of this study was to evaluate the resistance to degradation by collagenase A of corneas that have been crosslinked with Rose Bengal and green light (RGX). Methods: The ex vivo crosslinking procedure was performed on enucleated rabbit corneas. Corneas were deepithelialized after applying 30% alcohol. Corneas were stained with Rose Bengal (RB, 0.1%) for 2 minutes and then exposed to green light (532 nm) at 0.25 W/cm2 for times to deliver doses of 50, 100, 150, or 200 J/cm2 (n = 5 per group). Five corneas were pretreated with riboflavin solution (0.1% riboflavin) for 15 minutes and irradiated with ultraviolet A (UVA) light (370 nm, 3 mW/cm2) for 30 minutes. Five corneas underwent only de-epithelialization and were otherwise untreated. Five corneas were stained with RB without light exposure. The central corneas of each group was removed with a 8.5-mm trephine and incubated at 37°C in 0.3% collagenase A solution. Time to dissolution of each cornea was compared across treatments. Results: Corneas treated with RGX were treated with light fluences of 50, 100, 150, and 200 J/cm2; these corneas dissolved completely at 8.3 ± 1.2, 11.1 ± 1.4, 12.4 ± 1.7, and 15.7 ± 1.8 hours, respectively. Corneas treated by riboflavin and UVA light dissolved at 15.7 ± 1.7 hours, and nontreated corneas dissolved at 6.1 ± 1.3 hours. Corneas treated with only RB (no green light) dissolved at 9.3 ± 1.7 hours. Compared with the untreated corneas, all of the RB groups and the riboflavin-UVA-treated group of corneas degraded statistically significantly slower than untreated corneas (P < 0.05). Conclusions: Crosslinking with RGX increased corneal resistance to digestion by collagenase comparable to that produced by riboflavin and UVA treatment.

Fan N-W, Wang S, Ortiz G, Chauhan SK, Chen Y, Dana R. Autoreactive memory Th17 cells are principally derived from T-bet+RORγt+ Th17/1 effectors. J Autoimmun 2022;129:102816.Abstract
Effector Th17 cells, including IFN-γ-IL-17+ (eTh17) and IFN-γ+IL-17+ (eTh17/1) subsets, play critical pathogenic functions in the induction of autoimmunity. As acute inflammation subsides, a small proportion of the effectors survive and convert to memory Th17 cells (mTh17), which sustain chronic inflammation in autoimmune diseases. Herein, we investigated the differential contributions of eTh17 versus eTh17/1 to the memory pool using an experimental model of ocular autoimmune disease. Our results show that adoptive transfer of Tbx21-/- CD4+ T cells or conditional deletion of Tbx21 in Th17 cells leads to diminished eTh17/1 in acute phase and functionally compromised mTh17 in chronic phase. Further, adoptive transfer of disease-specific eTh17/1, but not eTh17, leads to generation of mTh17 and sustained ocular inflammation. Collectively, our data demonstrate that T-bet-dependent eTh17/1 cells generated during the acute inflammation are the principal effector precursors of pathogenic mTh17 cells that sustain the chronicity of autoimmune inflammation.
Fan BJ, Chen X, Sondhi N, Sharmila FP, Soumittra N, Sripriya S, Sacikala S, Asokan R, Friedman DS, Pasquale LR, Gao RX, Vijaya L, Bailey JC, Vitart V, Macgregor S, Hammond CJ, Khor CC, Haines JL, George R, Wiggs JL, and Consortium MAGGS; IGGC; NEIGHBORHOOD. Family-Based Genome-Wide Association Study of South Indian Pedigrees Supports WNT7B as a Central Corneal Thickness Locus. Invest Ophthalmol Vis Sci 2018;59(6):2495-2502.Abstract
Purpose: To identify genetic risk factors contributing to central corneal thickness (CCT) in individuals from South India, a population with a high prevalence of ocular disorders. Methods: One hundred ninety-five individuals from 15 large South Indian pedigrees were genotyped using the Omni2.5 bead array. Family-based association for CCT was conducted using the score test in MERLIN. Results: Genome-wide association study (GWAS) identified strongest association for single nucleotide polymorphisms (SNPs) in the first intron of WNT7B and CCT (top SNP rs9330813; β = -0.57, 95% confidence interval [CI]: -0.78 to -0.36; P = 1.7 × 10-7). We further investigated rs9330813 in a Latino cohort and four independent European cohorts. A meta-analysis of these data sets demonstrated statistically significant association between rs9330813 and CCT (β = -3.94, 95% CI: -5.23 to -2.66; P = 1.7 × 10-9). WNT7B SNPs located in the same genomic region that includes rs9330813 have previously been associated with CCT in Latinos but with other ocular quantitative traits related to myopia (corneal curvature and axial length) in a Japanese population (rs10453441 and rs200329677). To evaluate the specificity of the observed WNT7B association with CCT in the South Indian families, we completed an ocular phenome-wide association study (PheWAS) for the top WNT7B SNPs using 45 ocular traits measured in these same families including corneal curvature and axial length. The ocular PheWAS results indicate that in the South Indian families WNT7B SNPs are primarily associated with CCT. Conclusions: The results indicate robust evidence for association between WNT7B SNPs and CCT in South Indian pedigrees, and suggest that WNT7B SNPs can have population-specific effects on ocular quantitative traits.
Fan N-W, Dohlman TH, Foulsham W, McSoley M, Singh RB, Chen Y, Dana R. The role of Th17 immunity in chronic ocular surface disorders. Ocul Surf 2020;Abstract
Th17 cells have been implicated in the pathogenesis of numerous inflammatory and autoimmune conditions. At the ocular surface, Th17 cells have been identified as key effector cells in chronic ocular surface disease. Evidence from murine studies indicates that following differentiation and expansion, Th17 cells migrate from the lymphoid tissues to the eye, where they release inflammatory cytokines including, but not limited to, their hallmark cytokine IL-17A. As the acute phase subsides, a population of long-lived memory Th17 cells persist, which predispose hosts both to chronic inflammation and severe exacerbations of disease; of great interest is the small subset of Th17/1 cells that secrete both IL-17A and IFN-γ in acute-on-chronic disease exacerbation. Over the past decade, substantial progress has been made in deciphering how Th17 cells interact with the immune and neuroimmune pathways that mediate chronic ocular surface disease. Here, we review (i) the evidence for Th17 immunity in chronic ocular surface disease, (ii) regulatory mechanisms that constrain the Th17 immune response, and (iii) novel therapeutic strategies targeting Th17 cells.
Farrand KF, Fridman M, Stillman IÖ, Schaumberg DA. Prevalence of Diagnosed Dry Eye Disease in the United States Among Adults Aged 18 Years and Older. Am J Ophthalmol 2017;Abstract
PURPOSE: To provide current estimates of the prevalence of diagnosed dry eye disease (DED) and associated demographics among US adults aged ≥18 years. DESIGN: Cross-sectional, population-based survey. METHODS: Data were analyzed from 75,000 participants in the 2013 National Health and Wellness Survey to estimate prevalence/risk of diagnosed DED overall, and by age, sex, insurance, and other demographic factors. We weighted the observed DED prevalence to project estimates to the US adult population and examined associations between demographic factors and DED using multivariable logistic regression. RESULTS: Based on weighted estimates, 6.8% of the US adult population was projected to have diagnosed DED (∼16.4 million people). Prevalence increased with age (18-34 years: 2.7%; ≥75 years: 18.6%) and was higher among women (8.8%; ∼11.1 million) than men (4.5%; ∼5.3 million). After adjustment, there were no substantial differences in prevalence/risk of diagnosed DED by race, education, or US census region. However, there was higher risk of diagnosed DED among those aged 45-54 years (odds ratio [OR]: 1.95; 95% confidence interval [CI]: 1.74-2.20) and ≥75 years (OR: 4.95; 95% CI: 4.26-5.74), vs those aged 18-34 years. Risk was also higher among women vs men (OR: 2.00; 95% CI: 1.88-2.13) and insured vs uninsured participants (OR: 2.12; 95% CI: 1.85-2.43 for those on government and private insurance vs none). CONCLUSIONS: We estimate that >16 million US adults have diagnosed DED. Prevalence is higher among women than men, increases with age, and is notable among those aged 18-34 years.
Fayed M, Chen TC. Pediatric Intraocular Pressure Measurements: Tonometers, Central Corneal Thickness, and Anesthesia. Surv Ophthalmol 2019;Abstract
Measuring intraocular pressure (IOP) is the cornerstone of a comprehensive glaucoma exam. In babies or small children, however, IOP measurements are problematic, cannot often be done at the slit lamp, and are sometimes require general anesthesia. Therefore, it is essential for an ophthalmologist who examines a pediatric patient to be aware of the different tonometers used in children, as well as the effects of central corneal thickness (CCT) and anesthesia on IOP measurements. Goldmann applanation tonometry is the gold standard for IOP assessment. Most alternative tonometers tend to give higher IOP readings compared to the Goldmann applanation tonometer, and readings between different tonometers are often not interchangeable. Like Goldmann tonometry, many of these alternative tonometers are affected by CCT, with thicker corneas having artifactually high IOP readings and thinner corneas having artifactually lower IOP readings. Although various machines can be used to compensate for corneal factors (e.g. the dynamic contour tonometer and ocular response analyzer), it is important to be aware that certain ocular diseases can be associated with abnormal CCT values and that their IOP readings need to be interpreted accordingly. Because induction and anesthetics can affect IOP, office IOPs taken in awake patients are always the most accurate.
Ferrari G, Hajrasouliha AR, Sadrai Z, Ueno H, Chauhan SK, Dana R. Nerves and neovessels inhibit each other in the cornea. Invest Ophthalmol Vis Sci 2013;54(1):813-20.Abstract
PURPOSE: To evaluate the regulatory cross-talk of the vascular and neural networks in the cornea. METHODS: b-FGF micropellets (80 ng) were implanted in the temporal side of the cornea of healthy C57Bl/6 mice. On day 7, blood vessels (hemangiogenesis) and nerves were observed by immunofluorescence staining of corneal flat mounts. The next group of mice underwent either trigeminal stereotactic electrolysis (TSE), or sham operation, to ablate the ophthalmic branch of the trigeminal nerve. Blood vessel growth was detected by immunohistochemistry for PECAM-1 (CD31) following surgery. In another set of mice following TSE or sham operation, corneas were harvested for ELISA (VEGFR3 and pigment epithelium-derived factor [PEDF]) and for quantitative RT-PCR (VEGFR3, PEDF, and CD45). PEDF, VEGFR3, beta-3 tubulin, CD45, CD11b, and F4/80 expression in the cornea were evaluated using immunostaining. RESULTS: No nerves were detected in the areas subject to corneal neovascularization, whereas they persisted in the areas that were neovessel-free. Conversely, 7 days after denervation, significant angiogenesis was detected in the cornea, and this was associated with a significant decrease in VEGFR3 (57.5% reduction, P = 0.001) and PEDF protein expression (64% reduction, P < 0.001). Immunostaining also showed reduced expression of VEGFR3 in the corneal epithelial layer. Finally, an inflammatory cell infiltrate, including macrophages, was observed. CONCLUSION: Our data suggest that sensory nerves and neovessels inhibit each other in the cornea. When vessel growth is stimulated, nerves disappear and, conversely, denervation induces angiogenesis. This phenomenon, here described in the eye, may have far-reaching implications in understanding angiogenesis.
Fini EM, Jeong S, Gong H, Martinez-Carrasco R, Laver NMV, Hijikata M, Keicho N, Argüeso P. Membrane-associated mucins of the ocular surface: New genes, new protein functions and new biological roles in human and mouse. Prog Retin Eye Res 2019;:100777.Abstract
The mucosal glycocalyx of the ocular surface constitutes the point of interaction between the tear film and the apical epithelial cells. Membrane-associated mucins (MAMs) are the defining molecules of the glycocalyx in all mucosal epithelia. Long recognized for their biophysical properties of hydration, lubrication, anti-adhesion and repulsion, MAMs maintain the wet ocular surface, lubricate the blink, stabilize the tear film and create a physical barrier to the outside world. However, it is increasingly appreciated that MAMs also function as cell surface receptors that transduce information from the outside to the inside of the cell. A number of excellent review articles have provided perspective on the field as it has progressed since 1987, when molecular cloning of the first MAM was reported. The current article provides an update for the ocular surface, placing it into the broad context of findings made in other organ systems, and including new genes, new protein functions and new biological roles. We discuss the epithelial tissue-equivalent with mucosal differentiation, the key model system making these advances possible. In addition, we make the first systematic comparison of MAMs in human and mouse, establishing the basis for using knockout mice for investigations with the complexity of an in vivo system. Lastly, we discuss findings from human genetics/genomics, which are providing clues to new MAM roles previously unimagined. Taken together, this information allows us to generate hypotheses for the next stage of investigation to expand our knowledge of MAM function in intracellular signaling and roles unique to the ocular surface.
Fjaervoll H, Fjaervoll K, Magno M, Moschowits E, Vehof J, Dartt DA, Utheim TP. The association between visual display terminal use and dry eye: a review. Acta Ophthalmol 2022;100(4):357-375.Abstract
BACKGROUND: Dry eye disease (DED) is a multifactorial disease of the tear film and ocular surface. It causes ocular symptoms, reduced quality of life and a considerable economic burden on society. Prolonged use of visual display terminals (VDTs) has been suggested as an important risk factor for DED. PURPOSE: This review aims to study the association between DED and VDT use with an emphasis on the prevalence of DED among VDT users and harmful daily duration of VDT use. METHODS: A PubMed search was conducted and yielded 57 relevant articles based on a set of inclusion and exclusion criteria. The studies were subclassified according to study design. RESULTS: The far majority of the studies showed an association between VDT use and DED or DED-related signs and symptoms. The prevalence of definite or probable DED in VDT and office workers ranged from 26% to 70%, with as few as 1-2 hr of VDT exposure per day being associated with DED. CONCLUSION: VDT use is strongly associated with DED. VDT-associated DED is prevalent, but the exact prevalence needs to be further elucidated using standardized DED diagnosis criteria. Furthermore, a safe lower limit of daily VDT use has yet to be established. More research is needed on the effect of digitalization and digital transformation, which are particularly high during the time of the COVID-19 pandemic.
Fjaervoll K, Fjaervoll H, Magno M, Nøland ST, Dartt DA, Vehof J, Utheim TP. Review on the possible pathophysiological mechanisms underlying visual display terminal-associated dry eye disease. Acta Ophthalmol 2022;Abstract
BACKGROUND: Visual display terminal (VDT) use is a key risk factor for dry eye disease (DED). Visual display terminal (VDT) use reduces the blink rate and increases the number of incomplete blinks. However, the exact mechanisms causing DED development from VDT use have yet to be clearly described. PURPOSE: The purpose of the study was to conduct a review on pathophysiological mechanisms promoting VDT-associated DED. METHODS: A PubMed search of the literature investigating the relationship between dry eye and VDT was performed, and relevance to pathophysiology of DED was evaluated. FINDINGS: Fifty-five articles met the inclusion criteria. Several pathophysiological mechanisms were examined, and multiple hypotheses were extracted from the articles. Visual display terminal (VDT) use causes DED mainly through impaired blinking patterns. Changes in parasympathetic signalling and increased exposure to blue light, which could disrupt ocular homeostasis, were proposed in some studies but lack sufficient scientific support. Together, these changes may lead to a reduced function of the tear film, lacrimal gland, goblet cells and meibomian glands, all contributing to DED development. CONCLUSION: Visual display terminal (VDT) use appears to induce DED through both direct and indirect routes. Decreased blink rates and increased incomplete blinks increase the exposed ocular evaporative area and inhibit lipid distribution from meibomian glands. Although not adequately investigated, changes in parasympathetic signalling may impair lacrimal gland and goblet cell function, promoting tear film instability. More studies are needed to better target and improve the treatment and prevention of VDT-associated DED.
Fostad IG, Eidet JR, Utheim TP, Ræder S, Lagali NS, Messelt EB, Dartt DA. Dry Eye Disease Patients with Xerostomia Report Higher Symptom Load and Have Poorer Meibum Expressibility. PLoS One 2016;11(5):e0155214.Abstract

The purpose of the study was to investigate if xerostomia (dry mouth) is associated with symptoms and signs of dry eye disease (DED). At the Norwegian Dry Eye Clinic, patients with symptomatic DED with different etiologies were consecutively included in the study. The patients underwent a comprehensive ophthalmological work-up and completed self-questionnaires on symptoms of ocular dryness (Ocular Surface Disease Index [OSDI] and McMonnies Dry Eye Questionnaire) and the Sjögren's syndrome (SS) questionnaire (SSQ). Three hundred and eighteen patients (52% women and 48% men) with DED were included. Patient demographics were: 0 to 19 years (1%), 20 to 39 (25%), 40 to 59 (34%), 60 to 79 (35%) and 80 to 99 (5%). Xerostomia, defined as "daily symptoms of dry mouth the last three months" (as presented in SSQ) was reported by 23% of the patients. Female sex was more common among patients with xerostomia (81%) than among non-xerostomia patients (44%; P<0.001). Patients with xerostomia (60 ± 15 years) were older than those without xerostomia (51 ± 17; P<0.001). The use of prescription drugs was more prevalent among xerostomia patients (65%) than among non-xerostomia patients (35%; P<0.021; adjusted for age and sex). Patients with xerostomia had a higher OSDI score (19.0 ± 10.0) than those without xerostomia (12.9 ± 8.0; P<0.001). Moreover, xerostomia patients had more pathological meibum expressibility (0.9 ± 0.7) than those without xerostomia (0.7 ± 0.8; P = 0.046). Comparisons of OSDI and ocular signs were performed after controlling for the effects of sex, age and the number of systemic prescription drugs used. In conclusion, xerostomia patients demonstrated a higher DED symptom load and had poorer meibum expressibility than non-xerostomia patients.

Fostad IG, Eidet JR, Shatos MA, Utheim TP, Utheim OA, Raeder S, Dartt DA. Biopsy harvesting site and distance from the explant affect conjunctival epithelial phenotype ex vivo. Exp Eye Res 2012;104:15-25.Abstract
The purpose of the study was to investigate if the number of goblet cells expanded ex vivo from a conjunctival explant is affected by the biopsy harvesting site on the conjunctiva and the distance from the explant. Conjunctival explants from six regions: superior and inferior bulbus, fornix, and tarsus of male Sprague-Dawley rats were grown in RPMI 1640 with 10% fetal bovine serum on coverslips for eight days. Histochemical and immunofluorescent staining of goblet (CK-7/UEA-1/MUC5AC), stratified squamous, non-goblet (CK-4), proliferating (PCNA) and progenitor (ABCG2) cells were analyzed by epifluorescence and laser confocal microscopy. Outgrowth was measured with NIH ImageJ. For statistical analysis the Mann-Whitney test and Spearman's rank-order correlation test were used. Cultures from superior and inferior fornix contained the most goblet cells as indicated by the presence of CK-7+, UEA-1+ and MUC5AC+ cells. Superior and inferior forniceal cultures displayed 60.8% ± 9.2% and 64.7% ± 6.7% CK-7+ cells, respectively, compared to the superior tarsal (26.6% ± 8.4%; P < 0.05), superior bulbar (31.0% ± 4.0%; P < 0.05), inferior bulbar (38.5% ± 9.3%; P < 0.05) and inferior tarsal cultures (27.7% ± 8.3%; P < 0.05). While 28.4% ± 6.3% of CK-7+ goblet cells co-labeled with PCNA, only 7.4% ± 1.6% of UEA-1+ goblet cells did (P < 0.01). CK-7+ goblet cells were located at a lower concentration close to the explant (39.8% ± 3.1%) compared to near the leading edge (58.2% ± 4.5%; P < 0.05). Both markers for goblet cell secretory product (UEA-1 and MUC5AC), however, displayed the opposite pattern with a higher percentage of positive cells close to the explant than near the leading edge (P < 0.05). The percentage of CK-4+ cells was higher near the explant compared to near the leading edge (P < 0.01). The percentage of CK-7+ goblet cells in the cultures did not correlate with the outgrowth size (r(s) = -0.086; P = 0.435). The percentage of UEA-1+ goblet cells correlated negatively with outgrowth size (r(s) = -0.347; P < 0.01), whereas the percentage of CK-4+ cells correlated positively with the outgrowth size (r(s) = 0.473; P < 0.05). We conclude that forniceal explants yield the highest number of goblet cells ex vivo and thereby seem to be optimal for goblet cell transplantation. We also suggest that CK-7+/UEA-1- cells represent highly proliferative immature goblet cells. These cells could be important during conjunctival migration as they are mostly located close to the leading edge and their density does not decrease with increasing outgrowth size.
Foulsham W, Mittal SK, Taketani Y, Chen Y, Nakao T, Chauhan SK, Dana R. Aged Mice Exhibit Severe Exacerbations of Dry Eye Disease with an Amplified Memory Th17 Cell Response. Am J Pathol 2020;190(7):1474-1482.Abstract
The prevalence as well as the severity of dry eye disease increase with age. Memory T helper 17 (Th17) cells (CD4IL-17ACD44) drive the chronic and relapsing course of dry eye disease. Here, we investigated the contribution of memory Th17 cells to age-related dry eye disease, and evaluated memory Th17 cell depletion with anti-IL-15 antibody as a strategy to abrogate the severe exacerbations of dry eye disease observed in aged mice. After initial exposure to desiccating stress, aged mice maintained higher frequencies of memory Th17 cells in the draining lymph nodes relative to young mice. Upon secondary exposure to desiccating stress, aged mice developed more severe corneal epitheliopathy than young mice, which is associated with increased local frequencies of Th17 cells (CD4IL-17A). Treatment with anti-IL-15 antibody decreased the enlarged memory Th17 pool in aged mice to frequencies comparable with young mice. Furthermore, anti-IL-15-treated mice showed significantly reduced conjunctival infiltration of Th17 cells and lower corneal fluorescein staining scores compared with saline-treated control mice. Our data suggest that age-related increases in the memory Th17 compartment predispose aged mice toward the development of severe corneal epithelial disease after exposure to a dry environment. Selectively targeting memory Th17 cells may be a viable therapeutic approach in the treatment of age-related dry eye disease.
Foulsham W, Coco G, Amouzegar A, Chauhan SK, Dana R. When Clarity Is Crucial: Regulating Ocular Surface Immunity. Trends Immunol 2018;39(4):288-301.Abstract
The ocular surface is a unique mucosal immune compartment in which anatomical, physiological, and immunological features act in concert to foster a particularly tolerant microenvironment. These mechanisms are vital to the functional competence of the eye, a fact underscored by the devastating toll of excessive inflammation at the cornea - blindness. Recent data have elucidated the contributions of specific anatomical components, immune cells, and soluble immunoregulatory factors in promoting homeostasis at the ocular surface. We highlight research trends at this distinctive mucosal barrier and identify crucial gaps in our current knowledge.
Foulsham W, Dohlman TH, Mittal SK, Taketani Y, Singh RB, Masli S, Dana R. Thrombospondin-1 in ocular surface health and disease. Ocul Surf 2019;Abstract
Thrombospondin 1 (TSP-1) is an extracellular matrix protein that interacts with a wide array of ligands including cell receptors, growth factors, cytokines and proteases to regulate various physiological and pathological processes. Constitutively expressed by certain ocular surface tissues (e.g. corneal and conjunctival epithelium), TSP-1 expression is modulated during ocular surface inflammation. TSP-1 is an important activator of latent TGF-β, serving to promote the immunomodulatory and wound healing functions of TGF-β. Mounting research has deepened our understanding of how TSP-1 expression (and lack thereof) contributes to ocular surface homeostasis and disease. Here, we review current knowledge of the function of TSP-1 in dry eye disease, ocular allergy, angiogenesis/lymphangiogenesis, corneal transplantation, corneal wound healing and infectious keratitis.
Foulsham W, Marmalidou A, Amouzegar A, Coco G, Chen Y, Dana R. Review: The function of regulatory T cells at the ocular surface. Ocul Surf 2017;15(4):652-659.Abstract
Regulatory T cells (Tregs) are critical modulators of immune homeostasis. Tregs maintain peripheral tolerance to self-antigens, thereby preventing autoimmune disease. Furthermore, Tregs suppress excessive immune responses deleterious to the host. Recent research has deepened our understanding of how Tregs function at the ocular surface. This manuscript describes the classification, the immunosuppressive mechanisms, and the phenotypic plasticity of Tregs. We review the contribution of Tregs to ocular surface autoimmune disease, as well as the function of Tregs in allergy and infection at the ocular surface. Finally, we review the role of Tregs in promoting allotolerance in corneal transplantation.
Franco JJ, Reyes Luis JL, Rahim S, Greenstein S, Pineda R. Survival of the fittest: phacoemulsification outcomes in four corneal transplants by Dr Ramon Castroviejo. Br J Ophthalmol 2021;105(8):1076-1081.Abstract
AIM: To evaluate and report the outcomes following phacoemulsification on four eyes, 45 years or more after corneal transplantation. METHODS: A retrospective case series of four eyes in three patients (P1, P2, P3), undergoing phacoemulsification at least 45 years after corneal transplantation by Dr Ramon Castroviejo. Corneal graft survival outcome measures included central corneal thickness (CCT), best-corrected visual acuity (BCVA), corneal clarity and endothelial cell count (ECC). RESULTS: Phacoemulsification was successfully completed in all four cases with no instances of graft failure during the postoperative follow-up period, which ranged from 17 months to 76 months. At the conclusion of the follow-up period, all four grafts remained clear, and BCVA remained better than or similar to preoperative values. Long-term follow-up revealed no meaningful changes in CCT after phacoemulsification. All but one case experienced a decrease in ECC, with ECC values in the four cases ranging from 538 cells/mm2 to 1436 cells/mm2 at the conclusion of postoperative follow-up. CONCLUSION: Limited data have been published on the long-term survival of corneal grafts after intraocular surgery, especially for extremely 'mature' corneal transplants. This case series demonstrates that with appropriate preoperative, intraoperative and postoperative measures, successful phacoemulsification can be performed in these cases with excellent long-term results.
García-Posadas L, Hodges RR, Li D, Shatos MA, Storr-Paulsen T, Diebold Y, Dartt DA. Interaction of IFN-γ with cholinergic agonists to modulate rat and human goblet cell function. Mucosal Immunol 2016;9(1):206-17.Abstract

Goblet cells populate wet-surfaced mucosa including the conjunctiva of the eye, intestine, and nose, among others. These cells function as part of the innate immune system by secreting high molecular weight mucins that interact with environmental constituents including pathogens, allergens, and particulate pollutants. Herein, we determined whether interferon gamma (IFN-γ), a Th1 cytokine increased in dry eye, alters goblet cell function. Goblet cells from rat and human conjunctiva were cultured. Changes in intracellular [Ca(2+)] ([Ca(2+)]i), high molecular weight glycoconjugate secretion, and proliferation were measured after stimulation with IFN-γ with or without the cholinergic agonist carbachol. IFN-γ itself increased [Ca(2+)]i in rat and human goblet cells and prevented the increase in [Ca(2+)]i caused by carbachol. Carbachol prevented IFN-γ-mediated increase in [Ca(2+)]i. This cross-talk between IFN-γ and muscarinic receptors may be partially due to use of the same Ca(2+)i reservoirs, but also from interaction of signaling pathways proximal to the increase in [Ca(2+)]i. IFN-γ blocked carbachol-induced high molecular weight glycoconjugate secretion and reduced goblet cell proliferation. We conclude that increased levels of IFN-γ in dry eye disease could explain the lack of goblet cells and mucin deficiency typically found in this pathology. IFN-γ could also function similarly in respiratory and gastrointestinal tracts.

García-Posadas L, Hodges RR, Diebold Y, Dartt DA. Context-Dependent Regulation of Conjunctival Goblet Cell Function by Allergic Mediators. Sci Rep 2018;8(1):12162.Abstract
In the eye, goblet cells responsible for secreting mucins are found in the conjunctiva. When mucin production is not tightly regulated several ocular surface disorders may occur. In this study, the effect of the T helper (Th) 2-type cytokines IL4, IL5, and IL13 on conjunctival goblet cell function was explored. Goblet cells from rat conjunctiva were cultured and characterized. The presence of cytokine receptors was confirmed by Reverse Transcription-Polymerase Chain Reaction (RT-PCR). Changes in intracellular [Ca], high molecular weight glycoconjugate secretion, and proliferation were measured after stimulation with Th2 cytokines with or without the allergic mediator histamine. We found that IL4 and IL13 enhance cell proliferation and, along with histamine, stimulate goblet cell secretion. We conclude that the high levels of IL4, IL5, and IL13 that characterize allergic conjunctivitis could be the reason for higher numbers of goblet cells and mucin overproduction found in this condition.
García-Posadas L, Hodges RR, Utheim TP, Olstad OK, Delcroix V, Makarenkova HP, Dartt DA. Lacrimal Gland Myoepithelial Cells Are Altered in a Mouse Model of Dry Eye Disease. Am J Pathol 2020;190(10):2067-2079.Abstract
The purpose of this study was to determine the pathogenic changes that occur in myoepithelial cells (MECs) from lacrimal glands of a mouse model of Sjögren syndrome. MECs were cultured from lacrimal glands of C57BL/6J [wild type (WT)] and thrombospondin 1 null (TSP1, alias Thbs1) mice and from mice expressing α-smooth muscle actin-green fluorescent protein that labels MECs. MECs were stimulated with cholinergic and α-adrenergic agonists, vasoactive intestinal peptide (VIP), and the purinergic agonists ATP and UTP. Then intracellular [Ca] was measured using fura-2, and contraction was observed using live cell imaging. Expression of purinergic receptors was determined by Western blot analysis, and mRNA expression was analyzed by microarray. The increase in intracellular [Ca] with VIP and UTP was significantly smaller in MECs from TSP1 compared with WT mice. Cholinergic agonists, ATP, and UTP stimulated contraction in MECs, although contraction of MECs from TSP1 mice was reduced compared with WT mice. The amount of purinergic receptors P2Y1, P2Y11, and P2Y13 was significantly decreased in MECs from TSP1 compared with WT mice, whereas several extracellular matrix and inflammation genes were up-regulated in MECs from TSP1 mice. We conclude that lacrimal gland MEC function is altered by inflammation because the functions regulated by cholinergic agonists, VIP, and purinergic receptors are decreased in TSP1 compared with WT mice.