Cornea

G
Grassi CM, Cruzat A, Taniguchi EV, Crnej A, Colby KA, Dohlman CH, Chodosh J. Periprosthetic Tissue Loss in Patients With Idiopathic Vitreous Inflammation After the Boston Keratoprosthesis. Cornea 2015;34(11):1378-82.Abstract

PURPOSE: Idiopathic vitritis is a poorly understood complication after Boston keratoprosthesis surgery with unclear etiology. We sought to determine whether an association exists between periprosthetic corneal tissue loss and the development of idiopathic vitritis in keratoprosthesis recipients. METHODS: Thirteen Boston type I keratoprosthesis recipient eyes with a history of idiopathic vitritis and 34 type I keratoprosthesis recipient eyes with no history of idiopathic vitritis underwent anterior segment optical coherence tomography (AS-OCT) at a median time postoperatively of 2.4 years versus 1.9 years (range, 0.5-14.2 vs. 0.1-13.6 years), respectively. Areas of corneal graft tissue loss ("gaps") around the keratoprosthesis stem were identified and analyzed by 2 masked observers. The difference in the presence, number, and size of gaps was compared between cases and controls. RESULTS: A periprosthetic gap was identified more commonly in idiopathic vitritis cases than in controls on AS-OCT (11/13, 86% vs. 11/34, 33.3%, P < 0.001). The number of gaps between cases and controls was also significantly different (2.6 ± 1.6 vs. 0.5 ± 0.8, P < 0.001), but not the estimated gap area (0.056 ± 0.049 mm vs. 0.039 ± 0.025 mm, P = 0.22). CONCLUSIONS: A significantly higher proportion of keratoprosthesis recipient eyes with idiopathic vitritis had corneal tissue loss around the keratoprosthesis stem than did controls. Tissue loss could serve as an entry point for debris or bacterial components, triggering idiopathic vitritis. Our study underscores the utility of AS-OCT imaging in the postoperative management of keratoprosthesis patients.

Grassi CM, Crnej A, Paschalis EI, Colby KA, Dohlman CH, Chodosh J. Idiopathic vitritis in the setting of Boston keratoprosthesis. Cornea 2015;34(2):165-70.Abstract

PURPOSE: The aim of this study was to revisit the clinical paradigm attributed to Boston keratoprosthesis recipients presenting with idiopathic vitreous inflammation. METHODS: A retrospective chart review was performed of keratoprosthesis recipients at Massachusetts Eye and Ear Infirmary, from January 2000 to August 2013, for demographic data, indication(s) for surgery, timing and presentation of vitreous inflammation, and best-corrected visual acuity at baseline, on presentation, and after resolution of vitritis. RESULTS: Twenty-three (23 eyes) of 346 patients developed idiopathic vitreous inflammation after keratoprosthesis implantation. Six of 23 patients presented with signs and symptoms similar to infectious endophthalmitis but were culture negative. The proportion of patients who fit the previous paradigm of sudden painless loss of vision without external signs of infection ("sterile vitritis") at their first presentation with vitritis was only 4 of 23. Vision decline was variable (median, 9 lines on Snellen chart; range, 0-24), as was time to recovery of best vision (median, 8.9 weeks; range, 0.9-36.7). Nine eyes had repeat bouts (43 episodes in 23 patients). Ten of 43 episodes did not recover to baseline vision. Seventeen of 23 eyes with idiopathic vitritis after keratoprosthesis later developed other complications. CONCLUSIONS: The current paradigm for idiopathic vitritis after keratoprosthesis implantation includes sudden painless loss of vision with full recovery of vision on treatment with periocular corticosteroids. However, idiopathic vitritis after keratoprosthesis can also mimic infectious endophthalmitis with pain and external signs of inflammation. Visual loss can be gradual. Vision may not recover to baseline despite treatment. Vitritis may be a part of a common pathway of chronic inflammation after keratoprosthesis.

Gregory-Ksander M, Perez VL, Marshak-Rothstein A, Ksander BR. Soluble Fas ligand blocks destructive corneal inflammation in mouse models of corneal epithelial debridement and LPS induced keratitis. Exp Eye Res 2019;179:47-54.Abstract
Neutrophil-mediated inflammation plays a critical role in corneal damage following injury or infection. Previous studies demonstrated that membrane-bound FasL (mFasL) induces neutrophil chemokine production. However, the extracellular domain of mFasL is normally cleaved by matrix metalloproteinases to release a soluble form of FasL (sFasL) and sFasL antagonizes mFasL-mediated chemokine production. Therefore, we hypothesized that sFasL could be used to prevent neutrophil-mediated corneal inflammation associated with injury and bacterial keratitis. To test this hypothesis, GFP-only, sFasL-GFP, or mFasL-GFP were expressed in the corneal stroma of C57BL/6 mice, using intra-stromal injections of plasmid DNA or adenoviral vectors (AV) and the role of mFasL and sFasL in corneal inflammation was examined in models of corneal injury and LPS-induced keratitis. Our work addresses an important area of disagreement in the field of FasL, with regard to the mechanism by which sFasL regulates ocular inflammation. Herein, we demonstrate that an intrastromal injection of GFP-only, sFasL-GFP, or mFasL-GFP plasmid DNA resulted in GFP expression throughout the corneal stroma for up to two weeks with little to no evidence of inflammation in the GFP-only and sFasL-GFP groups and mild corneal inflammation in the mFasL-GFP group. Similarly, following epithelial debridement, corneas expressing GFP-only or sFasL-GFP showed no significant signs of corneal inflammation, with clear corneas at 15 days post debridement. By contrast, epithelial debridement of corneas expressing mFasL-GFP triggered persistent corneal inflammation and the development of central corneal opacities that was blocked by sFasL. Similar to the mFasL-GFP plasmid DNA, intrastromal injection of mFasL-GFP AV triggered mild corneal inflammation, but it was transient and resolved by day 10 with corneas remaining clear out to 30 days post injection. Nevertheless, intrastromal expression of mFasL-GFP AV exacerbated LPS-induced keratitis, corneal opacity, and neovascularization, while sFasL-GFP AV expression prevented LPS-induced keratitis, resulting in a clear cornea. Histological analysis of corneas with LPS-induced keratitis revealed a robust infiltration of macrophages and neutrophils and sFasL expression specifically blocked the neutrophil influx. Overall, our data demonstrate that stromal expression of mFasL is inflammatory, while sFasL is non-inflammatory, and opposes the effects of mFasL in mouse models of epithelial debridement and LPS-induced keratitis. These data demonstrate that a delicate balance between sFasL and mFasL regulates ocular inflammation. This study further identifies sFasL as a potent inhibitor of neutrophil-mediated corneal damage, and supports the potential use of sFasL in the treatment of neutrophil-mediated keratitis. These results strongly support the hypothesis that, in the immune privileged environment of the eye, the isoform of FasL regulates immune privilege and determines the extent of inflammation: mFasL promotes inflammation and sFasL blocks inflammation.
Greiner JV, Glonek T, Korb DR, Lindsay ME, Oliver PJ, Olson MCD. Corneal Cryopreservation Using Glycerylphosphorylcholine-Enriched Medium. Cornea 2020;39(3):370-375.Abstract
PURPOSE: To determine the effects of prolonged cryopreservation at subzero-degree temperatures on corneal transparency and histology after treatment with preservation medium containing the phosphodiester glycerylphosphorylcholine (GPC). METHODS: Rabbit corneas (n = 30) were immersed for 3 hours in K-Sol preservation medium containing 30 mM GPC. Three groups with 6 corneas each were refrigerated at -8°C for 2 weeks and liquid nitrogen temperature for 2 and 6 weeks, respectively. Two groups with 6 corneas each immersed in K-Sol preservation medium only were refrigerated at -8°C for 2 weeks and liquid nitrogen temperature for 6 weeks, respectively. Postthawing corneal transparency was measured on a grading scale after which corneas were prepared for and analyzed by light and transmission electron microscopy. RESULTS: All 3 groups of corneas preserved with GPC maintained a greater degree of corneal transparency compared with corneas preserved without GPC. The number of corneas retaining epithelial and endothelial layers increased in all groups where corneas were preserved in medium containing GPC, in contrast to corneas preserved in medium without GPC. Cytoplasmic vacuolization or nuclear damage was greater in corneas preserved without GPC. Similar findings were found in corneas stored at -8°C and liquid nitrogen temperatures. CONCLUSIONS: This study demonstrates a cryoprotective effect of corneas preserved in K-Sol containing the phosphodiester GPC at subzero-degree temperatures. In corneas immersed in preservation medium containing GPC, a higher degree of transparency is maintained and a lesser degree of histopathologic changes is observed with storage at both -8°C and in liquid nitrogen.
Greiner JV, Lindsay ME, Kenyon KR, Herman JP, Reddy CV. Meesmann epithelial corneal dystrophy: recurrence following photorefractive keratectomy. Can J Ophthalmol 2017;52(6):e211-e213.
Greiner JV, Glonek T, Korb DR, Lindsay ME, Oliver PJ. Corneal absorption of glycerylphosphorylcholine. Exp Eye Res 2020;192:107932.Abstract
This study documents the absorption of glycerylphosphorylcholine (GPC) into corneas ex vivo. Corneas in quadruplicate were incubated in preservation medium containing 30 mM GPC, which is used as a reference marker. The GPC reference marker is used to calibrate P nuclear magnetic resonance (NMR) spectral chemical-shift positions for identification of phosphatic metabolites and to calculate intracorneal pH in intact tissues ex vivo. Following baseline NMR ex vivo analysis, corneas were stored in eye bank chambers in preservation medium containing 30 mM GPC at 4 °C overnight for 8 h. After returning to room temperature, NMR analysis was repeated on the same corneas in fresh GPC-free preservation medium. NMR analysis also was performed on the 30 mM GPC preservation medium alone from the eye bank chambers for detection of the GPC signal. The elevated GPC signal unexpectedly persisted in corneas incubated at 4 °C overnight even though GPC was not present in the fresh GPC-free preservation medium. In fact, the concentration of GPC in the intact cornea was many times higher than that found in the cornea endogenously. The levels of phosphatic metabolites and the energy modulus, after subtracting the spectral contribution of the 30 mM exogenous GPC, as well as the intracorneal pH remained unchanged from pre-refrigeration analyses. Corneas also retained transparency through the time-course of this study irrespective of temperature or change in temperature. The GPC signal in the NMR analysis of the preservation medium from the eye bank chambers was nearly undetectable. GPC was unexpectedly absorbed into the corneal tissue without detectable metabolic or physical toxicity. The intracorneal uptake of GPC at reduced temperatures parallels the increase in GPC that occurs naturally in muscle tissue in animals during wintering periods and the very high concentration of GPC in sperm, a cryogenically compatible cell, suggestive of a potential role for GPC in cryopreservation.
Greiner JV, Glonek T. Hydrotropic function of ATP in the crystalline lens. Exp Eye Res 2020;190:107862.Abstract
The hypothesis proposed herein is presented to explain the unexpectedly high concentration of ATP and provide evidence to support its hydrotropic function in the crystalline lens determined using P NMR. The lens, historically considered to be a metabolically quiescent organ, has the requisite machinery to synthesize ATP, such that the homeostatic level is maintained at about 3 mM. This relatively high concentration of ATP has been found to be consistent among multiple mammalian species including humans. This millimolar quantity is many times greater than the micromolar amounts required for the other known functions of ATP. The recent postulation that ATP at millimolar concentrations functions as a hydrotrope in various cell/tissue homogenates preventing protein aggregation coupled with observations presented herein, provide support for extending the hypothesis that ATP functions as a hydrotrope not only in homogenates but in an intact functioning organ, the crystalline lens. Concentrations of ATP of this magnitude are hypothesized to be required to maintain protein solubility and effectively prevent protein aggregation. This concept is important considering protein aggregation is the etiology for age-related cataractogenesis. ATP is a common ubiquitous intracellular molecule possessing the requisite hydrotropic properties for maintaining intracellular proteins in a fluid, non-aggregated state. It is proposed that the amphiphilic ATP molecule shields the hydrophobic regions on intralenticular fiber cell protein molecules and provides a hydrophilic interfacial surface comprised of the ATP negatively charged triphosphate side chain. Evidence is presented that this side chain is exposed to and has been reported to organize intracellular interstitial water to form an interfacial rheologically dynamic water layer. Such organization of water is substantiated with the effect of deuterium oxide (heavy water) on ATP line widths of the side chain phosphates measured ex vivo by P NMR. A novel model is presented to propose how this water layer separates adjacent lens fiber cell proteins, keeping them from aggregating. This hypothesis proposes that ATP can prevent protein aggregation in normal intact lenses, and with declining concentrations can be related to the disease process in age-related cataractogenesis, an affliction that affects every older human being.
Greiner JV. Long-term (12-month) improvement in meibomian gland function and reduced dry eye symptoms with a single thermal pulsation treatment. Clin Exp Ophthalmol 2013;41(6):524-30.Abstract
PURPOSE: To determine the 1-year post-treatment dry eye status of subjects with meibomian gland dysfunction and dry eye symptoms after receiving a single LipiFlow Thermal Pulsation System treatment. DESIGN: Single-centre, prospective, observational, open-label, 1-month-registered clinical trial with a 1-year follow-up examination. PARTICIPANTS: Patients with evaporative dry eye disease with meibomian gland dysfunction and dry eye symptoms who had participated in the registered 1-month clinical trial. METHODS: Eighteen of 30 subjects initially enrolled were able to return for a 1-year follow-up. Both eyes of all patients were treated with a single 12-min treatment using the LipiFlow Thermal Pulsation System. Meibomian gland function, tear break-up time and dry eye symptoms were measured. Data are presented for pretreatment (baseline), and 1-month and 1-year post-treatment. MAIN OUTCOME MEASURES: Meibomian gland secretion scores, and tear break-up time and dry eye symptoms. RESULTS: Significant improvement in meibomian gland secretion scores from baseline measurements (4.0 ± 3.4) to 1-month post-treatment (11.3 ± 4.7; P < 0.0005) was maintained at 1-year (7.3 ± 4.6; P < 0.05). Baseline tear break-up time (4.9 ± 3.0) was significantly increased at 1-month (9.5 ± 6.9; P < 0.05); however, this improvement was no longer evident at 1-year post-treatment (6.0 ± 4.4). The significant improvement in symptom scores on Ocular Surface Disease Index and Standard Patient Evaluation of Eye Dryness questionnaires observed at 1-month (P < 0.0005) was maintained at 1-year (Ocular Surface Disease Index [P < 0.05]; Standard Patient Evaluation of Eye Dryness [P < 0.0005]). CONCLUSION: A single 12-min treatment with the Lipi Flow Thermal Pulsation System offers an effective treatment for evaporative dry eye and meibomian gland dysfunction resulting in significant and sustained improvement in signs and symptoms for up to 1 year.
Greiner JV. A single LipiFlow® Thermal Pulsation System treatment improves meibomian gland function and reduces dry eye symptoms for 9 months. Curr Eye Res 2012;37(4):272-8.Abstract
PURPOSE: To evaluate the effect of a single treatment with the LipiFlow(®) Thermal Pulsation System on signs of meibomian gland dysfunction (MGD) and dry eye symptoms over a 9-month period. METHODS: Patients (n = 42 eyes, 21 subjects) diagnosed with MGD and dry eye symptoms were recruited for a non-significant risk, prospective, open-label, 1-month clinical trial. Patients received a single 12-minute treatment using the LipiFlow(®) Thermal Pulsation System on each eye. The LipiFlow(®) device applies heat to the conjunctival surfaces of the upper and lower inner eyelids while simultaneously applying pulsatile pressure to the outer eyelid surfaces to express the meibomian glands. Patient symptoms were evaluated using the Ocular Surface Disease Index (OSDI) and Standard Patient Evaluation for Eye Dryness (SPEED) dry eye questionnaires; tear break-up time was measured with the dry eye test (DET™); and meibomian gland function was evaluated using a standardized diagnostic expression technique. Data are presented for patient's pre-treatment (baseline) and at 1-month and 9-month post-treatment. RESULTS: Meibomian gland secretion scores improved significantly from baseline (4.4 ± 4.0) to 1-month post-treatment (11.3 ± 6.2; p < 0.0001) and this improvement was maintained with no significant regression at 9 months (11.7 ± 5.9). Similarly, baseline tear break-up time (4.8 ± 3.2) was significantly increased at 1 month (9.6 ± 7.6; p < 0.001) and this increase was maintained with no significant regression at 9 months (7.1 ± 5.6). Symptom scores on both OSDI and SPEED questionnaires improved significantly at 1 month (p < 0.0001) and this improvement was maintained at 9 months. CONCLUSION: With such prolonged improvement in signs and symptoms of dry eye disease, the LipiFlow(®) Thermal Pulsation System offers a technological advancement for the treatment of dry eye disease secondary to meibomian gland dysfunction. A single 12-minute LipiFlow(®) treatment results in up to 9 months of sustained improvement of meibomian gland function, tear break-up time and dry eye symptoms that are unparalleled with current dry eye treatments.
Grob SR, Jakobiec FA, Stagner AM, Colby KA. Diffuse Epibulbar Complex Lacrimal-Cartilaginous Choristoma: Diagnostic Clues and Management. Cornea 2015;34(10):1321-3.Abstract

PURPOSE: To describe the clinical and histopathologic features distinguishing an extensive complex choristoma of the epibulbar surface and to address the management of such lesions. METHODS: Clinical history, diagnostic imaging studies, and histopathologic sections stained with hematoxylin and eosin were reviewed from a 2-year-old girl with a congenital conjunctival lesion of the right eye that was surgically excised. RESULTS: The patient clinically displayed an extensive, vascularized amelanotic conjunctival lesion located superotemporally with extension onto the cornea. Her visual acuity was reduced to 20/670. The clinical diagnosis was a large lacrimal gland choristoma with corneal involvement and resulting deprivation amblyopia. The patient underwent an excision of the lesion including the corneal portion, and the ocular surface was reconstructed with amniotic membrane. Histopathologic evaluation disclosed lobules of lacrimal tissue and cartilage plaques, smooth muscle, and nerves consistent with a complex choristoma. Six weeks postoperatively, the visual acuity had improved to 20/180. The patient returned to her local ophthalmologist for amblyopia management. CONCLUSIONS: We emphasize the importance of recognizing lesion-induced amblyopia and the timely performance of appropriate surgery for complex epibulbar choristomas. A differential diagnosis of other congenital epibulbar lesions is provided.

Grob SR, Gonzalez-Gonzalez LA, Daly MK. Management of mydriasis and pain in cataract and intraocular lens surgery: review of current medications and future directions. Clin Ophthalmol 2014;8:1281-9.Abstract

The maintenance of mydriasis and the control of postoperative pain and inflammation are critical to the safety and success of cataract and intraocular lens replacement surgery. Appropriate mydriasis is usually achieved by topical and/or intracameral administration of anticholinergic agents, sympathomimetic agents, or both, with the most commonly used being cyclopentolate, tropicamide, and phenylephrine. Ocular inflammation is common after cataract surgery. Topical steroids and nonsteroidal anti-inflammatory drugs are widely used because they have been proved effective to control postsurgical inflammation and decrease pain. Topical nonsteroidal anti-inflammatory drugs have also been shown to help maintain dilation. However, use of multiple preoperative drops for pupil dilation, inflammation, and pain control have been shown to be time consuming, resulting in delays to the operating room, and they cause dissatisfaction among perioperative personnel; their use can also be associated with systemic side effects. Therefore, ophthalmologists have been in search of new options to streamline this process. This article will review the current medications commonly used for intraoperative mydriasis, as well as pain and inflammation control. In addition, a new combination of ketorolac, an anti-inflammatory agent, and phenylephrine, a mydriatic agent has recently been designed to maintain intraoperative mydriasis and to reduce postoperative pain and irritation from intraocular lens replacement surgery. Two Phase III clinical trials evaluating this combination have demonstrated statistically significant differences when compared to placebo in maintaining intraoperative mydriasis (P<0.00001) and in reducing pain in the early postoperative period (P=0.0002). This medication may be of benefit for use in cataract and lens replacement surgery in the near future.

Gromova A, Voronov DA, Yoshida M, Thotakura S, Meech R, Dartt DA, Makarenkova HP. Lacrimal Gland Repair Using Progenitor Cells. Stem Cells Transl Med 2016;Abstract

: In humans, the lacrimal gland (LG) is the primary contributor to the aqueous layer of the tear film. Production of tears in insufficient quantity or of inadequate quality may lead to aqueous-deficiency dry eye (ADDE). Currently there is no cure for ADDE. The development of strategies to reliably isolate LG stem/progenitor cells from the LG tissue brings great promise for the design of cell replacement therapies for patients with ADDE. We analyzed the therapeutic potential of epithelial progenitor cells (EPCPs) isolated from adult wild-type mouse LGs by transplanting them into the LGs of TSP-1(-/-) mice, which represent a novel mouse model for ADDE. TSP-1(-/-) mice are normal at birth but progressively develop a chronic form of ocular surface disease, characterized by deterioration, inflammation, and secretory dysfunction of the lacrimal gland. Our study shows that, among c-kit-positive epithelial cell adhesion molecule (EpCAM(+)) populations sorted from mouse LGs, the c-kit(+)dim/EpCAM(+)/Sca1(-)/CD34(-)/CD45(-) cells have the hallmarks of an epithelial cell progenitor population. Isolated EPCPs express pluripotency factors and markers of the epithelial cell lineage Runx1 and EpCAM, and they form acini and ducts when grown in reaggregated three-dimensional cultures. Moreover, when transplanted into injured or "diseased" LGs, they engraft into acinar and ductal compartments. EPCP-injected TSP-1(-/-) LGs showed reduction of cell infiltration, differentiation of the donor EPCPs within secretory acini, and substantial improvement in LG structural integrity and function. This study provides the first evidence for the effective use of adult EPCP cell transplantation to rescue LG dysfunction in a model system. SIGNIFICANCE: In humans, the lacrimal gland is the primary contributor to the aqueous layer of the tear film. Damage or inflammation of the lacrimal gland may lead to severe aqueous-deficiency dry eye and corneal disease. Endogenous lacrimal gland epithelial cell progenitors (EPCPs) injected into the gland of mouse model of human Sjögren's syndrome TSP-1(-/-) mice resulted in long-term engraftment and markedly improved structure and function of "diseased" lacrimal gland. This study demonstrates, for the first time, that EPCPs can mediate functional recovery of the lacrimal gland in a Sjögren's syndrome mouse model. These data establish proof of concept that endogenous stem/progenitor cell transplantation may be used to treat human lacrimal gland chronic inflammation.

Guhan S, Peng S-L, Janbatian H, Saadeh S, Greenstein S, Al Bahrani F, Fadlallah A, Yeh T-C, Melki SA. Surgical adhesives in ophthalmology: history and current trends. Br J Ophthalmol 2018;Abstract
Tissue adhesives are gaining popularity in ophthalmology, as they could potentially reduce the complications associated with current surgical methods. An ideal tissue adhesive should have superior tensile strength, be non-toxic and anti-inflammatory, improve efficiency and be cost-effective. Both synthetic and biological glues are available. The primary synthetic glues include cyanoacrylate and the recently introduced polyethylene glycol (PEG) derivatives, while most biological glues are composed of fibrin. Cyanoacrylate has a high tensile strength, but rapidly polymerises upon contact with any fluid and has been associated with histotoxicity. Fibrin induces less toxic and inflammatory reactions, and its polymerisation time can be controlled. Tensile strength studies have shown that fibrin is not as strong as cyanoacrylate. While more research is needed, PEG variants currently appear to have the most promise. These glues are non-toxic, strong and time-effective. Through MEDLINE and internet searches, this paper presents a systematic review of the current applications of surgical adhesives to corneal, glaucoma, retinal, cataract and strabismus surgeries. Our review suggests that surgical adhesives have promise to reduce problems in current ophthalmic surgical procedures.
Guo X, Sriram S, Tran JA, Hutcheon AEK, Zieske JD. Inhibition of Human Corneal Myofibroblast Formation. Invest Ophthalmol Vis Sci 2018;59(8):3511-3520.Abstract
Purpose: Transforming growth factor-beta (TGF-β) isoform 1 (T1) is involved in corneal fibrotic wound healing by stimulating myofibroblast transformation and altering fibrotic gene expression. In this study, two specific inhibitors were used to dissect the relationship between myofibroblast generation and the TGF-β/Smad- or TGF-β/p38-signaling pathway in human corneal fibroblasts (HCF). Methods: In HCF, Trx-SARA (Smad-pathway inhibitor) was used to block the TGF-β/Smad-signaling pathway, and the p38 inhibitor (p38inh, SB202190) was used to inhibit p38MAPK, thus blocking the TGF-β/p38-signaling pathway. HCF ± Trx-SARA or Trx-GA (SARA control) were serum starved overnight in Eagle's minimum essential medium (EMEM) ± p38inh, grown in EMEM ± T1 ± p38inh for 24 hours, and then processed for indirect-immunofluorescence, Western blot, or quantitative real-time polymerase chain reaction to examine α-smooth muscle actin (αSMA) and other fibrotic genes, such as fibronectin, thrombospondin1, and type III collagen. In addition, the morphology and the effect of p38inh on myofibroblast phenotype after myofibroblast formation were examined. Results: We observed that Trx-SARA had little effect on αSMA expression, indicating that blocking the Smad pathway did not significantly inhibit myofibroblast formation. However, p38inh did significantly inhibit αSMA and other fibrotic genes, thus efficiently preventing the transition of HCFs to myofibroblasts. In addition, morphology changed and αSMA decreased in myofibroblasts exposed to p38inh medium, as compared with controls. Conclusions: HCF transition to myofibroblasts was mainly through the p38 pathway. Therefore, blocking the p38 pathway may be a potential therapeutic tool for human corneal fibrosis prevention/treatment, because it controls myofibroblast formation in human corneal cells, while leaving other functions of T1 unaffected.
Gupta PK, Venkateswaran N. The role of KPI-121 0.25% in the treatment of dry eye disease: penetrating the mucus barrier to treat periodic flares. Ther Adv Ophthalmol 2021;13:25158414211012797.Abstract
The tear film, which includes mucins that adhere to foreign particles, rapidly clears allergens and pathogens from the ocular surface, protecting the underlying tissues. However, the tear film's ability to efficiently remove foreign particles during blinking can also pose challenges for topical drug delivery, as traditional eye drops (solutions and suspensions) are cleared from the ocular surface before the drug can penetrate into the conjunctival and corneal epithelium. In the past 15 years, there has been an increase in the development of nanoparticles with specialized coatings that have reduced affinity to mucins and are small enough in size to pass through the mucus barrier. These mucus-penetrating particles (MPPs) have been shown to efficiently penetrate the mucus barrier and reach the ocular surface tissues. Dry eye disease (DED) is a common inflammatory ocular surface disorder that often presents with periodic flares (exacerbations). However, currently approved immunomodulatory treatments for DED are intended for long-term use. Thus, there is a need for effective short-term treatments that can address intermittent flares of DED. Loteprednol etabonate, an ocular corticosteroid, was engineered to break down rapidly after administration to the ocular surface tissues and thereby reduce risks associated with other topical steroids. KPI-121 is an ophthalmic suspension that uses the MPP technology to deliver loteprednol etabonate more efficiently to the ocular tissues, achieving in animal models a 3.6-fold greater penetration of loteprednol etabonate to the cornea than traditional loteprednol etabonate ophthalmic suspensions. In clinical trials, short-term treatment with KPI-121 0.25% significantly reduced signs and symptoms of DED compared with its vehicle (placebo). Recently approved KPI-121 0.25%, with its novel drug delivery design and ease of use, has the potential to effectively treat periodic flares of DED experienced by many patients.
H
Halilovic A, Schmedt T, Benischke A-S, Hamill C, Chen Y, Santos JH, Jurkunas UV. Menadione-Induced DNA Damage Leads to Mitochondrial Dysfunction and Fragmentation During Rosette Formation in Fuchs Endothelial Corneal Dystrophy. Antioxid Redox Signal 2016;24(18):1072-83.Abstract

AIMS: Fuchs endothelial corneal dystrophy (FECD), a leading cause of age-related corneal edema requiring transplantation, is characterized by rosette formation of corneal endothelium with ensuing apoptosis. We sought to determine whether excess of mitochondrial reactive oxygen species leads to chronic accumulation of oxidative DNA damage and mitochondrial dysfunction, instigating cell death. RESULTS: We modeled the pathognomonic rosette formation of postmitotic corneal cells by increasing endogenous cellular oxidative stress with menadione (MN) and performed a temporal analysis of its effect in normal (HCEnC, HCECi) and FECD (FECDi) cells and ex vivo specimens. FECDi and FECD ex vivo specimens exhibited extensive mtDNA and nDNA damage as detected by quantitative PCR. Exposure to MN triggered an increase in mitochondrial superoxide levels and led to mtDNA and nDNA damage, while DNA amplification was restored with NAC pretreatment. Furthermore, MN exposure led to a decrease in ΔΨm and adenosine triphosphate levels in normal cells, while FECDi exhibited mitochondrial dysfunction at baseline. Mitochondrial fragmentation and cytochrome c release were detected in FECD tissue and after MN treatment of HCEnCs. Furthermore, cleavage of caspase-9 and caspase-3 followed MN-induced cytochrome c release in HCEnCs. INNOVATION: This study provides the first line of evidence that accumulation of oxidative DNA damage leads to rosette formation, loss of functionally intact mitochondria via fragmentation, and subsequent cell death during postmitotic cell degeneration of ocular tissue. CONCLUSION: MN induced rosette formation, along with mtDNA and nDNA damage, mitochondrial dysfunction, and fragmentation, leading to activation of the intrinsic apoptosis via caspase cleavage and cytochrome c release. Antioxid. Redox Signal. 24, 1072-1083.

Hall LN, Shanbhag SS, Rashad R, Chodosh J, Saeed HN. The effects of systemic cyclosporine in acute Stevens-Johnson syndrome/toxic epidermal necrolysis on ocular disease. Ocul Surf 2020;Abstract
PURPOSE: To evaluate the effect of systemic cyclosporine (CsA) on ocular disease in Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) patients. METHODS: In this retrospective, comparative cohort study at a single center, patients with a diagnosis of SJS/TEN and with at least 3 months of follow up were divided into two groups: those who received systemic CsA and those who did not receive systemic CsA. Best-corrected visual acuity (BCVA) and chronic ocular surface complications score (COCS) at final follow-up were compared between the two groups. RESULTS: The median age and follow-up period of patients was 29 years (range, 1.5-71 years) and 16.8 months (range, 3.67-91.58 months), respectively. BCVA, COCS, meibomian gland dysfunction, limbal stem cell deficiency, and the need for mucous membrane grafting and scleral lenses were not significantly different between patients who received systemic CsA as compared to patients who did not receive systemic CsA. CONCLUSIONS: In this small cohort of patients with SJS/TEN, we could identify no association between the use of systemic CsA as a component of their initial therapy and chronic ocular complications.
Hamrah P, Sahin A, Dastjerdi MH, Shahatit BM, Bayhan HA, Dana R, Pavan-Langston D. InVivo confocal microscopic changes of the corneal epithelium and stroma in patients with herpes zoster ophthalmicus. Am J Ophthalmol 2015;159(6):1036-1044.e1.Abstract

PURPOSE: To analyze the density and morphology of corneal epithelial cells and keratocytes by in vivo confocal microscopy (IVCM) in patients with herpes zoster ophthalmicus (HZO) as associated with corneal innervation. DESIGN: Prospective, controlled and masked cross-sectional study. METHODS: setting: Single-center study. PATIENTS: Thirty eyes with the diagnosis HZO and their contralateral clinically unaffected eyes, 15 eyes of 15 normal controls. intervention procedures: In vivo confocal microscopy and corneal esthesiometry of the central cornea. MAIN OUTCOME MEASURES: Changes in morphology and density of the superficial and basal epithelial cells and stromal keratocytes, and correlation with corneal sensation. RESULTS: The density of superficial epithelial cells in HZO eyes with severe sensation loss (766.5 ± 25.2 cells/mm(2)) was significantly lower than both healthy control eyes (1450.23 ± 150.83 cells/mm(2)) and contralateral unaffected eyes (1974.13 ± 298.24 cells/mm(2)) (P = .003). Superficial epithelial cell size (1162.5 μm(2)) was significantly larger in HZO eyes with severe loss of sensation, as compared to contralateral (441.46 ± 298.14) or healthy eyes (407.4 ± 47.2μm(2); all P < .05). The density of basal epithelial cells, anterior keratocytes, and posterior keratocytes did not show statistical significance between patients, controls, and contralateral unaffected eyes. Changes in superficial epithelial cell density and morphology correlated strongly with corneal sensation. CONCLUSIONS: In vivo confocal microscopy reveals profound HZO-induced changes in the superficial epithelium, as demonstrated by increase in cell size, decrease in cell density, and squamous metaplasia. We demonstrate that these changes strongly correlate with changes in corneal innervation in eyes affected by HZO.

Hamrah P, Qazi Y, Shahatit B, Dastjerdi MH, Pavan-Langston D, Jacobs DS, Rosenthal P. Corneal Nerve and Epithelial Cell Alterations in Corneal Allodynia: An In Vivo Confocal Microscopy Case Series. Ocul Surf 2017;15(1):139-151.Abstract

PURPOSE: To investigate morphological changes of the corneal epithelium and subbasal nerves in patients with corneal allodynia using in vivo confocal microscopy (IVCM). DESIGN: Case-control study of patients with corneal allodynia and healthy controls. METHODS: Ten eyes of six patients were diagnosed with corneal allodynia at a single center and compared to fifteen healthy eyes. IVCM of the central cornea was performed on all subjects and controls. Images were retrospectively analyzed numbers of total corneal subbasal nerves, main trunks and branches, total nerve length and density, nerve branching, and tortuosity, superficial and basal epithelial cell densities, and superficial epithelial cell size. RESULTS: Corneal allodynia was seen in patients with dry eye disease, recurrent corneal erosion syndrome, exposure to ultraviolet radiation, and Accutane use. Compared to controls, patients with corneal allodynia had a significant decrease in the total numbers of subbasal nerves (P=.014), nerve branches (P=.006), total nerve length (P=.0029), total nerve density (P=.0029) and superficial and basal epithelial cell densities (P=.0004, P=.0036) with an increase in superficial epithelial cell size (P=.016). There were no statistically significant differences in the number of subbasal nerve main trunks (P=.09), nerve branching (P=.21), and nerve tortuosity (P=.05). CONCLUSIONS: Corneal IVCM enables near-histological visualization and quantification of the cellular and neural changes in corneal allodynia. Regardless of etiology, corneal allodynia is associated with decreased corneal epithelial cell densities, increased epithelial cell size, and decreased numbers and lengths of subbasal nerves despite an unremarkable slit-lamp examination. Therefore, IVCM may be useful in the management of patients with corneal allodynia.

Hamrah P, Sahin A, Dastjerdi MH, Shahatit BM, Bayhan HA, Dana R, Pavan-Langston D. Cellular changes of the corneal epithelium and stroma in herpes simplex keratitis: an in vivo confocal microscopy study. Ophthalmology 2012;119(9):1791-7.Abstract
PURPOSE: To analyze the morphologic features of corneal epithelial cells and keratocytes by in vivo confocal microscopy in patients with herpes simplex keratitis (HSK) as associated with corneal innervation. DESIGN: Prospective, cross-sectional, controlled, single-center study. PARTICIPANTS: Thirty-one eyes with the diagnosis HSK and their contralateral clinically unaffected eyes were studied and compared with normal controls (n = 15). METHODS: In vivo confocal microscopy (Confoscan 4; Nidek Technologies, Gamagori, Japan) and corneal esthesiometry (Cochet-Bonnet; Luneau Ophthalmologie, Chartres, France) of the central cornea were performed bilaterally in all patients and controls. Patients were grouped into normal (>5.5 cm), mild (>2.5-5.5 cm), and severe (<2.5 cm) loss of sensation. MAIN OUTCOME MEASURES: Changes in morphologic features and density of the superficial and basal epithelial cells, as well as stromal keratocytes, were assessed by 2 masked observers. Changes were correlated to corneal sensation, number of nerves, and total length of nerves. RESULTS: There was a significant and gradual decrease in the density of superficial epithelial cells in HSK eyes, with 852.50 ± 24.4 cells/mm(2) in eyes with severe sensation loss and 2435.23 ± 224.3 cells/mm(2) in control eyes (P = 0.008). Superficial epithelial cell size was 2.5-fold larger in HSK eyes (835.3 μm(2)) compared with contralateral or normal eyes (407.4 μm(2); P = 0.003). A significant number of hyperreflective desquamating superficial epithelial cells were present in HSK eyes with normal (6.4%), mild (29.1%), and severe (52.2%) loss of sensation, but were absent in controls. The density of basal epithelial cells, anterior keratocytes, and posterior keratocytes did not show statistical significance between patients and controls. Changes in superficial epithelial cell density and morphologic features correlated strongly with total nerve length, number, and corneal sensation. Scans of contralateral eyes did not show any significant epithelial or stromal changes compared with controls. CONCLUSIONS: In vivo confocal microscopy reveals profound HSK-induced changes in the superficial epithelium, as demonstrated by increase in cell size, decrease in cell density, and squamous metaplasia. This study demonstrated that these changes correlate strongly with changes in corneal innervation.

Pages