Jacobs DS, Carrasquillo KG, Cottrell PD, Fernández-Velázquez FJ, Gil-Cazorla R, Jalbert I, Pucker AD, Riccobono K, Robertson DM, Szczotka-Flynn L, Speedwell L, Stapleton F.
CLEAR - Medical use of contact lenses. Cont Lens Anterior Eye 2021;44(2):289-329.
AbstractThe medical use of contact lenses is a solution for many complex ocular conditions, including high refractive error, irregular astigmatism, primary and secondary corneal ectasia, disfiguring disease, and ocular surface disease. The development of highly oxygen permeable soft and rigid materials has extended the suitability of contact lenses for such applications. There is consistent evidence that bandage soft contact lenses, particularly silicone hydrogel lenses, improve epithelial healing and reduce pain in persistent epithelial defects, after trauma or surgery, and in corneal dystrophies. Drug delivery applications of contact lens hold promise for improving topical therapy. Modern scleral lens practice has achieved great success for both visual rehabilitation and therapeutic applications, including those requiring retention of a tear reservoir or protection from an adverse environment. This report offers a practical and relevant summary of the current evidence for the medical use of contact lenses for all eye care professionals including optometrists, ophthalmologists, opticians, and orthoptists. Topics covered include indications for use in both acute and chronic conditions, lens selection, patient selection, wear and care regimens, and recommended aftercare schedules. Prevention, presentation, and management of complications of medical use are reviewed.
Jones L, Hui A, Phan C-M, Read ML, Azar D, Buch J, Ciolino JB, Naroo SA, Pall B, Romond K, Sankaridurg P, Schnider CM, Terry L, Willcox M.
CLEAR - Contact lens technologies of the future. Cont Lens Anterior Eye 2021;44(2):398-430.
AbstractContact lenses in the future will likely have functions other than correction of refractive error. Lenses designed to control the development of myopia are already commercially available. Contact lenses as drug delivery devices and powered through advancements in nanotechnology will open up further opportunities for unique uses of contact lenses. This review examines the use, or potential use, of contact lenses aside from their role to correct refractive error. Contact lenses can be used to detect systemic and ocular surface diseases, treat and manage various ocular conditions and as devices that can correct presbyopia, control the development of myopia or be used for augmented vision. There is also discussion of new developments in contact lens packaging and storage cases. The use of contact lenses as devices to detect systemic disease has mostly focussed on detecting changes to glucose levels in tears for monitoring diabetic control. Glucose can be detected using changes in colour, fluorescence or generation of electric signals by embedded sensors such as boronic acid, concanavalin A or glucose oxidase. Contact lenses that have gained regulatory approval can measure changes in intraocular pressure to monitor glaucoma by measuring small changes in corneal shape. Challenges include integrating sensors into contact lenses and detecting the signals generated. Various techniques are used to optimise uptake and release of the drugs to the ocular surface to treat diseases such as dry eye, glaucoma, infection and allergy. Contact lenses that either mechanically or electronically change their shape are being investigated for the management of presbyopia. Contact lenses that slow the development of myopia are based upon incorporating concentric rings of plus power, peripheral optical zone(s) with add power or non-monotonic variations in power. Various forms of these lenses have shown a reduction in myopia in clinical trials and are available in various markets.
Joseph S, Varadaraj V, Dave SR, Lage E, Lim D, Aziz K, Dudgeon S, Ravilla TD, Friedman DS.
Investigation of the Accuracy of a Low-Cost, Portable Autorefractor to Provide Well-Tolerated Eyeglass Prescriptions: A Randomized Crossover Trial. Ophthalmology 2021;128(12):1672-1680.
AbstractPURPOSE: To compare patient preferences for eyeglasses prescribed using a low-cost, portable wavefront autorefractor versus standard subjective refraction (SR). DESIGN: Randomized, cross-over clinical trial. PARTICIPANTS: Patients aged 18 to 40 years presenting with refractive errors (REs) to a tertiary eye hospital in Southern India. METHODS: Participants underwent SR followed by autorefraction (AR) using the monocular version of the QuickSee device (PlenOptika Inc). An independent optician, masked to the refraction approach, prepared eyeglasses based on each refraction approach. Participants (masked to refraction source) were randomly assigned to use SR- or AR-based eyeglasses first, followed by the other pair, for 1 week each. At the end of each week, participants had their vision checked and were interviewed about their experience with the eyeglasses. MAIN OUTCOME MEASURES: Patients preferring eyeglasses were chosen using AR and SR. RESULTS: The 400 participants enrolled between March 26, 2018, and August 2, 2019, had a mean (standard deviation) age of 28.4 (6.6) years, and 68.8% were women. There was a strong correlation between spherical equivalents using SR and AR (r = 0.97, P < 0.001) with a mean difference of -0.07 diopters (D) (95% limits of agreement [LoA], -0.68 to 0.83). Of the 301 patients (75.2%) who completed both follow-up visits, 50.5% (n = 152) and 49.5% (n = 149) preferred glasses prescribed using SR and AR, respectively (95% CI, 45.7-56.3; P = 0.86). There were no differences in demographic or vision characteristics between participants with different preferences (P > 0.05 for all). CONCLUSIONS: We observed a strong agreement between the prescriptions from SR and AR, and eyeglasses prescribed using SR and AR were equally preferred by patients. Wider use of prescribing based on AR alone in resource-limited settings is supported by these findings.