Genomics

M
Marsh AP, Edwards TJ, Galea C, Cooper HM, Engle EC, Jamuar SS, Méneret A, Moutard M-L, Nava C, Rastetter A, Robinson G, Rouleau G, Roze E, Spencer-Smith M, Trouillard O, de Villemeur TB, Walsh CA, Yu TW, Yu TW, Heron D, Sherr EH, Richards LJ, Depienne C, Leventer RJ, Lockhart PJ. DCC mutation update: Congenital mirror movements, isolated agenesis of the corpus callosum, and developmental split brain syndrome. Hum Mutat 2018;39(1):23-39.Abstract
The deleted in colorectal cancer (DCC) gene encodes the netrin-1 (NTN1) receptor DCC, a transmembrane protein required for the guidance of commissural axons. Germline DCC mutations disrupt the development of predominantly commissural tracts in the central nervous system (CNS) and cause a spectrum of neurological disorders. Monoallelic, missense, and predicted loss-of-function DCC mutations cause congenital mirror movements, isolated agenesis of the corpus callosum (ACC), or both. Biallelic, predicted loss-of-function DCC mutations cause developmental split brain syndrome (DSBS). Although the underlying molecular mechanisms leading to disease remain poorly understood, they are thought to stem from reduced or perturbed NTN1 signaling. Here, we review the 26 reported DCC mutations associated with abnormal CNS development in humans, including 14 missense and 12 predicted loss-of-function mutations, and discuss their associated clinical characteristics and diagnostic features. We provide an update on the observed genotype-phenotype relationships of congenital mirror movements, isolated ACC and DSBS, and correlate this to our current understanding of the biological function of DCC in the development of the CNS. All mutations and their associated phenotypes were deposited into a locus-specific LOVD (https://databases.lovd.nl/shared/genes/DCC).
Mathys H, Davila-Velderrain J, Peng Z, Gao F, Mohammadi S, Young JZ, Menon M, He L, Abdurrob F, Jiang X, Martorell AJ, Ransohoff RM, Hafler BP, Bennett DA, Kellis M, Tsai L-H. Author Correction: Single-cell transcriptomic analysis of Alzheimer's disease. Nature 2019;571(7763):E1.Abstract
Change history: In this Article, the Acknowledgements section should have included that the work was supported in part by the Cure Alzheimer's Fund (CAF), and the final NIH grant acknowledged should have been 'U01MH119509' instead of 'RF1AG054012'. In Supplementary Table 2, the column labels 'early.pathology.mean' and 'late.pathology.mean' were reversed in each worksheet (that is, columns Y and Z). These errors have been corrected online.
Maurer AC, Cepeda Diaz AK, Vandenberghe LH. Residues on Adeno-associated Virus Capsid Lumen Dictate Interactions and Compatibility with the Assembly-Activating Protein. J Virol 2019;93(7)Abstract
The adeno-associated virus (AAV) serves as a broadly used vector system for gene delivery. The process of AAV capsid assembly remains poorly understood. The viral cofactor assembly-activating protein (AAP) is required for maximum AAV production and has multiple roles in capsid assembly, namely, trafficking of the structural proteins (VP) to the nuclear site of assembly, promoting the stability of VP against multiple degradation pathways, and facilitating stable interactions between VP monomers. The N-terminal 60 amino acids of AAP (AAPN) are essential for these functions. Presumably, AAP must physically interact with VP to execute its multiple functions, but the molecular nature of the AAP-VP interaction is not well understood. Here, we query how structurally related AAVs functionally engage AAP from AAV serotype 2 (AAP2) toward virion assembly. These studies led to the identification of key residues on the lumenal capsid surface that are important for AAP-VP and for VP-VP interactions. Replacing a cluster of glutamic acid residues with a glutamine-rich motif on the conserved VP beta-barrel structure of variants incompatible with AAP2 creates a gain-of-function mutant compatible with AAP2. Conversely, mutating positively charged residues within the hydrophobic region of AAP2 and conserved core domains within AAPN creates a gain-of-function AAP2 mutant that rescues assembly of the incompatible variant. Our results suggest a model for capsid assembly where surface charge/neutrality dictates an interaction between AAPN and the lumenal VP surface to nucleate capsid assembly. Efforts to engineer the AAV capsid to gain desirable properties for gene therapy (e.g., tropism, reduced immunogenicity, and higher potency) require that capsid modifications do not affect particle assembly. The relationship between VP and the cofactor that facilitates its assembly, AAP, is central to both assembly preservation and vector production. Understanding the requirements for this compatibility can inform manufacturing strategies to maximize production and reduce costs. Additionally, library-based approaches that simultaneously examine a large number of capsid variants would benefit from a universally functional AAP, which could hedge against overlooking variants with potentially valuable phenotypes that were lost during vector library production due to incompatibility with the cognate AAP. Studying interactions between the structural and nonstructural components of AAV enhances our fundamental knowledge of capsid assembly mechanisms and the protein-protein interactions required for productive assembly of the icosahedral capsid.
Melo MB, Nguyen QP, Cordeiro C, Hassan MA, Yang N, McKell R, Rosowski EE, Julien L, Butty V, Dardé M-L, Ajzenberg D, Fitzgerald K, Young LH, Saeij JPJ. Transcriptional analysis of murine macrophages infected with different Toxoplasma strains identifies novel regulation of host signaling pathways. PLoS Pathog 2013;9(12):e1003779.Abstract
Most isolates of Toxoplasma from Europe and North America fall into one of three genetically distinct clonal lineages, the type I, II and III lineages. However, in South America these strains are rarely isolated and instead a great variety of other strains are found. T. gondii strains differ widely in a number of phenotypes in mice, such as virulence, persistence, oral infectivity, migratory capacity, induction of cytokine expression and modulation of host gene expression. The outcome of toxoplasmosis in patients is also variable and we hypothesize that, besides host and environmental factors, the genotype of the parasite strain plays a major role. The molecular basis for these differences in pathogenesis, especially in strains other than the clonal lineages, remains largely unexplored. Macrophages play an essential role in the early immune response against T. gondii and are also the cell type preferentially infected in vivo. To determine if non-canonical Toxoplasma strains have unique interactions with the host cell, we infected murine macrophages with 29 different Toxoplasma strains, representing global diversity, and used RNA-sequencing to determine host and parasite transcriptomes. We identified large differences between strains in the expression level of known parasite effectors and large chromosomal structural variation in some strains. We also identified novel strain-specifically regulated host pathways, including the regulation of the type I interferon response by some atypical strains. IFNβ production by infected cells was associated with parasite killing, independent of interferon gamma activation, and dependent on endosomal Toll-like receptors in macrophages and the cytoplasmic receptor retinoic acid-inducible gene 1 (RIG-I) in fibroblasts.
Menon M, Mohammadi S, Davila-Velderrain J, Goods BA, Cadwell TD, Xing Y, Stemmer-Rachamimov A, Shalek AK, Love JC, Kellis M, Hafler BP. Single-cell transcriptomic atlas of the human retina identifies cell types associated with age-related macular degeneration. Nat Commun 2019;10(1):4902.Abstract
Genome-wide association studies (GWAS) have identified genetic variants associated with age-related macular degeneration (AMD), one of the leading causes of blindness in the elderly. However, it has been challenging to identify the cell types associated with AMD given the genetic complexity of the disease. Here we perform massively parallel single-cell RNA sequencing (scRNA-seq) of human retinas using two independent platforms, and report the first single-cell transcriptomic atlas of the human retina. Using a multi-resolution network-based analysis, we identify all major retinal cell types, and their corresponding gene expression signatures. Heterogeneity is observed within macroglia, suggesting that human retinal glia are more diverse than previously thought. Finally, GWAS-based enrichment analysis identifies glia, vascular cells, and cone photoreceptors to be associated with the risk of AMD. These data provide a detailed analysis of the human retina, and show how scRNA-seq can provide insight into cell types involved in complex, inflammatory genetic diseases.
Mlynarski EE, Sheridan MB, Xie M, Guo T, Racedo SE, McDonald-McGinn DM, Gai X, Chow EWC, Vorstman J, Swillen A, Devriendt K, Breckpot J, Digilio MC, Marino B, Dallapiccola B, Philip N, Simon TJ, Roberts AE, Piotrowicz M, Bearden CE, Eliez S, Gothelf D, Coleman K, Kates WR, Devoto M, Zackai E, Heine-Suñer D, Shaikh TH, Bassett AS, Goldmuntz E, Morrow BE, Emanuel BS, Consortium IC22q11 2. Copy-Number Variation of the Glucose Transporter Gene SLC2A3 and Congenital Heart Defects in the 22q11.2 Deletion Syndrome. Am J Hum Genet 2015;96(5):753-64.Abstract
The 22q11.2 deletion syndrome (22q11DS; velocardiofacial/DiGeorge syndrome; VCFS/DGS) is the most common microdeletion syndrome and the phenotypic presentation is highly variable. Approximately 65% of individuals with 22q11DS have a congenital heart defect (CHD), mostly of the conotruncal type, and/or an aortic arch defect. The etiology of this phenotypic variability is not currently known. We hypothesized that copy-number variants (CNVs) outside the 22q11.2 deleted region might increase the risk of being born with a CHD in this sensitized population. Genotyping with Affymetrix SNP Array 6.0 was performed on two groups of subjects with 22q11DS separated by time of ascertainment and processing. CNV analysis was completed on a total of 949 subjects (cohort 1, n = 562; cohort 2, n = 387), 603 with CHDs (cohort 1, n = 363; cohort 2, n = 240) and 346 with normal cardiac anatomy (cohort 1, n = 199; cohort 2, n = 147). Our analysis revealed that a duplication of SLC2A3 was the most frequent CNV identified in the first cohort. It was present in 18 subjects with CHDs and 1 subject without (p = 3.12 × 10(-3), two-tailed Fisher's exact test). In the second cohort, the SLC2A3 duplication was also significantly enriched in subjects with CHDs (p = 3.30 × 10(-2), two-tailed Fisher's exact test). The SLC2A3 duplication was the most frequent CNV detected and the only significant finding in our combined analysis (p = 2.68 × 10(-4), two-tailed Fisher's exact test), indicating that the SLC2A3 duplication might serve as a genetic modifier of CHDs and/or aortic arch anomalies in individuals with 22q11DS.
Moreno-Ramos OA, Olivares AM, Haider NB, de Autismo LC, Lattig MC. Whole-Exome Sequencing in a South American Cohort Links ALDH1A3, FOXN1 and Retinoic Acid Regulation Pathways to Autism Spectrum Disorders. PLoS One 2015;10(9):e0135927.Abstract

Autism spectrum disorders (ASDs) are a range of complex neurodevelopmental conditions principally characterized by dysfunctions linked to mental development. Previous studies have shown that there are more than 1000 genes likely involved in ASD, expressed mainly in brain and highly interconnected among them. We applied whole exome sequencing in Colombian-South American trios. Two missense novel SNVs were found in the same child: ALDH1A3 (RefSeq NM_000693: c.1514T>C (p.I505T)) and FOXN1 (RefSeq NM_003593: c.146C>T (p.S49L)). Gene expression studies reveal that Aldh1a3 and Foxn1 are expressed in ~E13.5 mouse embryonic brain, as well as in adult piriform cortex (PC; ~P30). Conserved Retinoic Acid Response Elements (RAREs) upstream of human ALDH1A3 and FOXN1 and in mouse Aldh1a3 and Foxn1 genes were revealed using bioinformatic approximation. Chromatin immunoprecipitation (ChIP) assay using Retinoid Acid Receptor B (Rarb) as the immunoprecipitation target suggests RA regulation of Aldh1a3 and Foxn1 in mice. Our results frame a possible link of RA regulation in brain to ASD etiology, and a feasible non-additive effect of two apparently unrelated variants in ALDH1A3 and FOXN1 recognizing that every result given by next generation sequencing should be cautiously analyzed, as it might be an incidental finding.

Morrison MA, Magalhaes TR, Ramke J, Smith SE, Ennis S, Simpson CL, Portas L, Murgia F, Ahn J, Dardenne C, Mayne K, Robinson R, Morgan DJ, Brian G, Lee L, Woo SJ, Zacharaki F, Tsironi EE, Miller JW, Kim IK, Park KH, Bailey-Wilson JE, Farrer LA, Stambolian D, Deangelis MM. Ancestry of the Timorese: age-related macular degeneration associated genotype and allele sharing among human populations from throughout the world. Front Genet 2015;6:238.Abstract

We observed that the third leading cause of blindness in the world, age-related macular degeneration (AMD), occurs at a very low documented frequency in a population-based cohort from Timor-Leste. Thus, we determined a complete catalog of the ancestry of the Timorese by analysis of whole exome chip data and haplogroup analysis of SNP genotypes determined by sequencing the Hypervariable I and II regions of the mitochondrial genome and 17 genotyped YSTR markers obtained from 535 individuals. We genotyped 20 previously reported AMD-associated SNPs in the Timorese to examine their allele frequencies compared to and between previously documented AMD cohorts of varying ethnicities. For those without AMD (average age > 55 years), genotype and allele frequencies were similar for most SNPs with a few exceptions. The major risk allele of HTRA1 rs11200638 (10q26) was at a significantly higher frequency in the Timorese, as well as 3 of the 5 protective CFH (1q32) SNPs (rs800292, rs2284664, and rs12066959). Additionally, the most commonly associated AMD-risk SNP, CFH rs1061170 (Y402H), was also seen at a much lower frequency in the Korean and Timorese populations than in the assessed Caucasian populations (C ~7 vs. ~40%, respectively). The difference in allele frequencies between the Timorese population and the other genotyped populations, along with the haplogroup analysis, also highlight the genetic diversity of the Timorese. Specifically, the most common ancestry groupings were Oceanic (Melanesian and Papuan) and Eastern Asian (specifically Han Chinese). The low prevalence of AMD in the Timorese population (2 of 535 randomly selected participants) may be due to the enrichment of protective alleles in this population at the 1q32 locus.

Mundell NA, Beier KT, Pan AY, Lapan SW, Göz Aytürk D, Berezovskii VK, Wark AR, Drokhlyansky E, Bielecki J, Born RT, Schier AF, Cepko CL. Vesicular stomatitis virus enables gene transfer and transsynaptic tracing in a wide range of organisms. J Comp Neurol 2015;523(11):1639-63.Abstract

Current limitations in technology have prevented an extensive analysis of the connections among neurons, particularly within nonmammalian organisms. We developed a transsynaptic viral tracer originally for use in mice, and then tested its utility in a broader range of organisms. By engineering the vesicular stomatitis virus (VSV) to encode a fluorophore and either the rabies virus glycoprotein (RABV-G) or its own glycoprotein (VSV-G), we created viruses that can transsynaptically label neuronal circuits in either the retrograde or anterograde direction, respectively. The vectors were investigated for their utility as polysynaptic tracers of chicken and zebrafish visual pathways. They showed patterns of connectivity consistent with previously characterized visual system connections, and revealed several potentially novel connections. Further, these vectors were shown to infect neurons in several other vertebrates, including Old and New World monkeys, seahorses, axolotls, and Xenopus. They were also shown to infect two invertebrates, Drosophila melanogaster, and the box jellyfish, Tripedalia cystophora, a species previously intractable for gene transfer, although no clear evidence of transsynaptic spread was observed in these species. These vectors provide a starting point for transsynaptic tracing in most vertebrates, and are also excellent candidates for gene transfer in organisms that have been refractory to other methods.

N
Nassi JJ, Cepko CL, Born RT, Beier KT. Neuroanatomy goes viral!. Front Neuroanat 2015;9:80.Abstract

The nervous system is complex not simply because of the enormous number of neurons it contains but by virtue of the specificity with which they are connected. Unraveling this specificity is the task of neuroanatomy. In this endeavor, neuroanatomists have traditionally exploited an impressive array of tools ranging from the Golgi method to electron microscopy. An ideal method for studying anatomy would label neurons that are interconnected, and, in addition, allow expression of foreign genes in these neurons. Fortuitously, nature has already partially developed such a method in the form of neurotropic viruses, which have evolved to deliver their genetic material between synaptically connected neurons while largely eluding glia and the immune system. While these characteristics make some of these viruses a threat to human health, simple modifications allow them to be used in controlled experimental settings, thus enabling neuroanatomists to trace multi-synaptic connections within and across brain regions. Wild-type neurotropic viruses, such as rabies and alpha-herpes virus, have already contributed greatly to our understanding of brain connectivity, and modern molecular techniques have enabled the construction of recombinant forms of these and other viruses. These newly engineered reagents are particularly useful, as they can target genetically defined populations of neurons, spread only one synapse to either inputs or outputs, and carry instructions by which the targeted neurons can be made to express exogenous proteins, such as calcium sensors or light-sensitive ion channels, that can be used to study neuronal function. In this review, we address these uniquely powerful features of the viruses already in the neuroanatomist's toolbox, as well as the aspects of their biology that currently limit their utility. Based on the latter, we consider strategies for improving viral tracing methods by reducing toxicity, improving control of transsynaptic spread, and extending the range of species that can be studied.

Navarro-Gomez D, Leipzig J, Shen L, Lott M, Stassen APM, Wallace DC, Wiggs JL, Falk MJ, van Oven M, Gai X. Phy-Mer: a novel alignment-free and reference-independent mitochondrial haplogroup classifier. Bioinformatics 2015;31(8):1310-2.Abstract

MOTIVATION: All current mitochondrial haplogroup classification tools require variants to be detected from an alignment with the reference sequence and to be properly named according to the canonical nomenclature standards for describing mitochondrial variants, before they can be compared with the haplogroup determining polymorphisms. With the emergence of high-throughput sequencing technologies and hence greater availability of mitochondrial genome sequences, there is a strong need for an automated haplogroup classification tool that is alignment-free and agnostic to reference sequence. RESULTS: We have developed a novel mitochondrial genome haplogroup-defining algorithm using a k-mer approach namely Phy-Mer. Phy-Mer performs equally well as the leading haplogroup classifier, HaploGrep, while avoiding the errors that may occur when preparing variants to required formats and notations. We have further expanded Phy-Mer functionality such that next-generation sequencing data can be used directly as input. AVAILABILITY AND IMPLEMENTATION: Phy-Mer is publicly available under the GNU Affero General Public License v3.0 on GitHub (https://github.com/danielnavarrogomez/phy-mer). CONTACT: Xiaowu_Gai@meei.harvard.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

O
O'Connell AE, Zhou F, Shah MS, Murphy Q, Rickner H, Kelsen J, Boyle J, Doyle JJ, Gangwani B, Thiagarajah JR, Kamin DS, Goldsmith JD, Richmond C, Breault DT, Agrawal PB. Neonatal-Onset Chronic Diarrhea Caused by Homozygous Nonsense WNT2B Mutations. Am J Hum Genet 2018;103(1):131-137.Abstract
Homozygous nonsense mutations in WNT2B were identified in three individuals from two unrelated families with severe, neonatal-onset osmotic diarrhea after whole-exome sequencing was performed on trios from the two families. Intestinal biopsy samples from affected individuals were used for histology and immunofluorescence and to generate enteroids ex vivo. Histopathologic evaluation demonstrated chronic inflammatory changes in the stomach, duodenum, and colon. Immunofluorescence demonstrated diminished staining for OLFM4, a marker for intestinal stem cells (ISCs). The enteroids generated from WNT2B-deficient intestinal epithelium could not be expanded and did not survive passage. Addition of CHIR-99021 (a GSK3A and GSK3B inhibitor and activator of canonical WNT/β-CATENIN signaling) could not rescue WNT2B-deficient enteroids. Addition of supplemental recombinant murine WNT2B was able to perpetuate small enteroids for multiple passages but failed to expand their number. Enteroids showed a 10-fold increase in the expression of LEF1 mRNA and a 100-fold reduction in TLR4 expression, compared with controls by quantitative RT-PCR, indicating alterations in canonical WNT and microbial pattern-recognition signaling. In summary, individuals with homozygous nonsense mutations in WNT2B demonstrate severe intestinal dysregulation associated with decreased ISC number and function, likely explaining their diarrheal phenotype. WNT2B deficiency should be considered for individuals with neonatal-onset diarrhea.
Olivares AM, Moreno-Ramos OA, Haider NB. Role of Nuclear Receptors in Central Nervous System Development and Associated Diseases. J Exp Neurosci 2015;9(Suppl 2):93-121.Abstract

The nuclear hormone receptor (NHR) superfamily is composed of a wide range of receptors involved in a myriad of important biological processes, including development, growth, metabolism, and maintenance. Regulation of such wide variety of functions requires a complex system of gene regulation that includes interaction with transcription factors, chromatin-modifying complex, and the proper recognition of ligands. NHRs are able to coordinate the expression of genes in numerous pathways simultaneously. This review focuses on the role of nuclear receptors in the central nervous system and, in particular, their role in regulating the proper development and function of the brain and the eye. In addition, the review highlights the impact of mutations in NHRs on a spectrum of human diseases from autism to retinal degeneration.

P
Pacouret S, Bouzelha M, Shelke R, Andres-Mateos E, Xiao R, Maurer A, Mevel M, Turunen H, Barungi T, Penaud-Budloo M, Broucque F, Blouin V, Moullier P, Ayuso E, Vandenberghe LH. AAV-ID: A Rapid and Robust Assay for Batch-to-Batch Consistency Evaluation of AAV Preparations. Mol Ther 2017;25(6):1375-1386.Abstract
Adeno-associated virus (AAV) vectors are promising clinical candidates for therapeutic gene transfer, and a number of AAV-based drugs may emerge on the market over the coming years. To insure the consistency in efficacy and safety of any drug vial that reaches the patient, regulatory agencies require extensive characterization of the final product. Identity is a key characteristic of a therapeutic product, as it ensures its proper labeling and batch-to-batch consistency. Currently, there is no facile, fast, and robust characterization assay enabling to probe the identity of AAV products at the protein level. Here, we investigated whether the thermostability of AAV particles could inform us on the composition of vector preparations. AAV-ID, an assay based on differential scanning fluorimetry (DSF), was evaluated in two AAV research laboratories for specificity, sensitivity, and reproducibility, for six different serotypes (AAV1, 2, 5, 6.2, 8, and 9), using 67 randomly selected AAV preparations. In addition to enabling discrimination of AAV serotypes based on their melting temperatures, the obtained fluorescent fingerprints also provided information on sample homogeneity, particle concentration, and buffer composition. Our data support the use of AAV-ID as a reproducible, fast, and low-cost method to ensure batch-to-batch consistency in manufacturing facilities and academic laboratories.
Pasquale LR, Kang JH, Fan BJ, Levkovitch-Verbin H, Wiggs JL. LOXL1 Polymorphisms: Genetic Biomarkers that Presage Environmental Determinants of Exfoliation Syndrome. J Glaucoma 2018;27 Suppl 1:S20-S23.Abstract
An agnostic high throughput search of the genome revealed a robust association between LOXL1 genetic polymorphisms and exfoliation syndrome (XFS), a discovery that likely would not have been possible with candidate or family-based gene search strategies. While questions remain regarding how LOXL1 gene variants contribute to XFS pathogenesis, it is clear that the frequencies of disease-related alleles do not track with the varying disease burden throughout the world, prompting a search for environmental risk factors. A geo-medicine approach revealed that disease load seemed to increase as a function of the distance from the equator. The exact reason for this extraequatorial disease distribution pattern remains unclear, but a greater amount of time spent outdoors is a robust risk factor for XFS, suggesting climatic factors such as ocular solar exposure and colder ambient temperature may be involved in disease pathogenesis. Prospective studies have also implicated higher coffee consumption and lower dietary folate intake in association with incident XFS. The discovery of environmental risk factors for XFS suggests that preventive measures may help to reduce ocular morbidity from XFS.
Patak J, Gilfert J, Byler M, Neerukonda V, Thiffault I, Cross L, Amudhavalli S, Pacio-Miguez M, Palomares-Bralo M, Garcia-Minaur S, Santos-Simarro F, Powis Z, Alcaraz W, Tang S, Jurgens J, Barry B, England E, Engle E, Hess J, Lebel RR. MAGEL2-related disorders: A study and case series. Clin Genet 2019;96(6):493-505.Abstract
Pathogenic MAGEL2 variants result in the phenotypes of Chitayat-Hall syndrome (CHS), Schaaf-Yang syndrome (SYS) and Prader-Willi syndrome (PWS). We present five patients with mutations in MAGEL2, including the first patient reported with a missense variant, adding to the limited literature. Further, we performed a systematic review of the CHS and SYS literature, assess the overlap between CHS, SYS and PWS, and analyze genotype-phenotype correlations among them. We conclude that there is neither a clinical nor etiological difference between CHS and SYS, and propose that the two syndromes simply be referred to as MAGEL2-related disorders.
Perez-Cervantes C, Smith LA, Nadadur RD, Hughes AEO, Wang S, Corbo JC, Cepko C, Lonfat N, Moskowitz IP. Enhancer transcription identifies -regulatory elements for photoreceptor cell types. Development 2020;147(3)Abstract
Identification of cell type-specific regulatory elements (CREs) is crucial for understanding development and disease, although identification of functional regulatory elements remains challenging. We hypothesized that context-specific CREs could be identified by context-specific non-coding RNA (ncRNA) profiling, based on the observation that active CREs produce ncRNAs. We applied ncRNA profiling to identify rod and cone photoreceptor CREs from wild-type and mutant mouse retinas, defined by presence or absence, respectively, of the rod-specific transcription factor (TF) -dependent ncRNA expression strongly correlated with epigenetic profiles of rod and cone photoreceptors, identified thousands of candidate rod- and cone-specific CREs, and identified motifs for rod- and cone-specific TFs. Colocalization of NRL and the retinal TF CRX correlated with rod-specific ncRNA expression, whereas CRX alone favored cone-specific ncRNA expression, providing quantitative evidence that heterotypic TF interactions distinguish cell type-specific CRE activity. We validated the activity of novel -dependent ncRNA-defined CREs in developing cones. This work supports differential ncRNA profiling as a platform for the identification of cell type-specific CREs and the discovery of molecular mechanisms underlying TF-dependent CRE activity.
Peter VG, Quinodoz M, Pinto-Basto J, Sousa SB, Di Gioia SA, Soares G, Ferraz Leal G, Silva ED, Pescini Gobert R, Miyake N, Matsumoto N, Engle EC, Unger S, Shapiro F, Superti-Furga A, Rivolta C, Campos-Xavier B. The Liberfarb syndrome, a multisystem disorder affecting eye, ear, bone, and brain development, is caused by a founder pathogenic variant in thePISD gene. Genet Med 2019;21(12):2734-2743.Abstract
PURPOSE: We observed four individuals in two unrelated but consanguineous families from Portugal and Brazil affected by early-onset retinal degeneration, sensorineural hearing loss, microcephaly, intellectual disability, and skeletal dysplasia with scoliosis and short stature. The phenotype precisely matched that of an individual of Azorean descent published in 1986 by Liberfarb and coworkers. METHODS: Patients underwent specialized clinical examinations (including ophthalmological, audiological, orthopedic, radiological, and developmental assessment). Exome and targeted sequencing was performed on selected individuals. Minigene constructs were assessed by quantitative polymerase chain reaction (qPCR) and Sanger sequencing. RESULTS: Affected individuals shared a 3.36-Mb region of autozygosity on chromosome 22q12.2, including a 10-bp deletion (NM_014338.3:c.904-12_904-3delCTATCACCAC), immediately upstream of the last exon of the PISD (phosphatidylserine decarboxylase) gene. Sequencing of PISD from paraffin-embedded tissue from the 1986 case revealed the identical homozygous variant. In HEK293T cells, this variant led to aberrant splicing of PISD transcripts. CONCLUSION: We have identified the genetic etiology of the Liberfarb syndrome, affecting brain, eye, ear, bone, and connective tissue. Our work documents the migration of a rare Portuguese founder variant to two continents and highlights the link between phospholipid metabolism and bone formation, sensory defects, and cerebral development, while raising the possibility of therapeutic phospholipid replacement.
Pierce EA, Bennett J. The Status of RPE65 Gene Therapy Trials: Safety and Efficacy. Cold Spring Harb Perspect Med 2015;Abstract

Several groups have reported the results of clinical trials of gene augmentation therapy for Leber congenital amaurosis (LCA) because of mutations in the RPE65 gene. These studies have used subretinal injection of adeno-associated virus (AAV) vectors to deliver the human RPE65 cDNA to the retinal pigment epithelial (RPE) cells of the treated eyes. In all of the studies reported to date, this approach has been shown to be both safe and effective. The successful clinical trials of gene augmentation therapy for retinal degeneration caused by mutations in the RPE65 gene sets the stage for broad application of gene therapy to treat retinal degenerative disorders.

Pollack S, Igo RP, Jensen RA, Christiansen M, Li X, Cheng C-Y, Ng MCY, Smith AV, Rossin EJ, Segrè AV, Davoudi S, Tan GS, Chen Y-DI, Kuo JZ, Dimitrov LM, Stanwyck LK, Meng W, Hosseini MS, Imamura M, Nousome D, Kim J, Hai Y, Jia Y, Ahn J, Leong A, Shah K, Park KH, Guo X, Ipp E, Taylor KD, Adler SG, Sedor JR, Freedman BI, Family Investigation of Nephropathy and Diabetes-Eye Research Group DCCT/EDICRG, Lee I-T, Sheu WH-H, Kubo M, Takahashi A, Hadjadj S, Marre M, Tregouet D-A, McKean-Cowdin R, Varma R, McCarthy MI, Groop L, Ahlqvist E, Lyssenko V, Agardh E, Morris A, Doney ASF, Colhoun HM, Toppila I, Sandholm N, Groop P-H, Maeda S, Hanis CL, Penman A, Chen CJ, Hancock H, Mitchell P, Craig JE, Chew EY, Paterson AD, Grassi MA, Palmer C, Bowden DW, Yaspan BL, Siscovick D, Cotch MF, Wang JJ, Burdon KP, Wong TY, Klein BEK, Klein R, Rotter JI, Iyengar SK, Price AL, Sobrin L. Multiethnic Genome-Wide Association Study of Diabetic Retinopathy Using Liability Threshold Modeling of Duration of Diabetes and Glycemic Control. Diabetes 2019;68(2):441-456.Abstract
To identify genetic variants associated with diabetic retinopathy (DR), we performed a large multiethnic genome-wide association study. Discovery included eight European cohorts ( = 3,246) and seven African American cohorts ( = 2,611). We meta-analyzed across cohorts using inverse-variance weighting, with and without liability threshold modeling of glycemic control and duration of diabetes. Variants with a value <1 × 10 were investigated in replication cohorts that included 18,545 European, 16,453 Asian, and 2,710 Hispanic subjects. After correction for multiple testing, the C allele of rs142293996 in an intron of nuclear VCP-like () was associated with DR in European discovery cohorts ( = 2.1 × 10), but did not reach genome-wide significance after meta-analysis with replication cohorts. We applied the Disease Association Protein-Protein Link Evaluator (DAPPLE) to our discovery results to test for evidence of risk being spread across underlying molecular pathways. One protein-protein interaction network built from genes in regions associated with proliferative DR was found to have significant connectivity ( = 0.0009) and corroborated with gene set enrichment analyses. These findings suggest that genetic variation in as well as variation within a protein-protein interaction network that includes genes implicated in inflammation, may influence risk for DR.

Pages