Imaging and Diagnostics

A
Armstrong GW, Kim LA, Vingopoulos F, Park J, Garg I, Kasetty M, Silverman RF, Zeng R, Douglas VP, Lopera F, Baena A, Giraldo M, Norton D, Cronin-Golomb A, Arboleda-Velasquez JF, Quiroz YT, Miller JB. Retinal Imaging Findings in Carriers With PSEN1-Associated Early-Onset Familial Alzheimer Disease Before Onset of Cognitive Symptoms. JAMA Ophthalmol 2021;139(1):49-56.Abstract
Importance: Individuals with autosomal dominant mutations for Alzheimer disease are valuable in determining biomarkers present prior to the onset of cognitive decline, improving the ability to diagnose Alzheimer disease as early as possible. Optical coherence tomography (OCT) has surfaced as a potential noninvasive technique capable of analyzing central nervous system tissues for biomarkers of Alzheimer disease. Objective: To evaluate whether OCT can detect early retinal alterations in carriers of the presenilin 1 (PSEN1 [OMIM 104311]) E280A mutation who are cognitively unimpaired. Design, Setting, and Participants: A cross-sectional imaging study conducted from July 13, 2015, to September 16, 2020, included 10 carriers of the PSEN1 E280A mutation who were cognitively unimpaired and 10 healthy noncarrier family members, all leveraged from a homogenous Colombian kindred. Statistical analysis was conducted from September 9, 2017, to September 16, 2020. Main Outcomes and Measures: Mixed-effects multiple linear regression was performed to compare the thickness values of the whole retina and individual retinal layers on OCT scans between mutation carriers and noncarriers. Simple linear-effects and mixed-effects multiple linear regression models were used to assess whether age was an effect modifier for PSEN1 mutation of amyloid β levels and retinal thickness, respectively. Fundus photographs were used to compare the number of arterial and venous branch points, arterial and venous tortuosity, and fractal dimension. Results: This study included 10 carriers of the PSEN1 E280A mutation who were cognitively unimpaired (7 women [70%]; mean [SD] age, 36.3 [8.1] years) and 10 healthy noncarrier family members (7 women [70%]; mean [SD] age, 36.4 [8.2] years). Compared with noncarrier controls, PSEN1 mutation carriers who were cognitively unimpaired had a generalized decrease in thickness of the whole retina as well as individual layers detected on OCT scans, with the inner nuclear layer (outer superior quadrant, β = -3.06; P = .007; outer inferior quadrant, β = -2.60; P = .02), outer plexiform layer (outer superior quadrant, β = -3.44; P = .03), and outer nuclear layer (central quadrant, β = -8.61; P = .03; inner nasal quadrant, β = -8.39; P = .04; inner temporal quadrant, β = -9.39; P = .02) showing the greatest amount of statistically significant thinning. Age was a significant effect modifier for the association between PSEN1 mutation and amyloid β levels in cortical regions (β = 0.03; P = .001) but not for the association between PSEN1 mutation and retinal thickness. No statistical difference was detected in any of the vascular parameters studied. Conclusions and Relevance: These findings suggest that OCT can detect functional and morphologic changes in the retina of carriers of familial Alzheimer disease who are cognitively unimpaired several years before clinical onset, suggesting that OCT findings and retinal vascular parameters may be biomarkers prior to the onset of cognitive decline.
Armstrong GW, Kalra G, De Arrigunaga S, Friedman DS, Lorch AC. Anterior Segment Imaging Devices in Ophthalmic Telemedicine. Semin Ophthalmol 2021;36(4):149-156.Abstract
Obtaining a clear assessment of the anterior segment is critical for disease diagnosis and management in ophthalmic telemedicine. The anterior segment can be imaged with slit lamp cameras, robotic remote controlled slit lamps, cell phones, cell phone adapters, digital cameras, and webcams, all of which can enable remote care. The ability of these devices to identify various ophthalmic diseases has been studied, including cataracts, as well as abnormalities of the ocular adnexa, cornea, and anterior chamber. This article reviews the current state of anterior segment imaging for the purpose of ophthalmic telemedical care.
C
Chang MY, Binenbaum G, Heidary G, Morrison DG, Galvin JA, Trivedi RH, Pineles SL. Imaging Methods for Differentiating Pediatric Papilledema from Pseudopapilledema: A Report by the American Academy of Ophthalmology. Ophthalmology 2020;127(10):1416-1423.Abstract
PURPOSE: To review the published literature on the accuracy of ophthalmic imaging methods to differentiate between papilledema and pseudopapilledema in children. METHODS: Literature searches were conducted in January 2020 in the PubMed database for English-language studies with no date restrictions and in the Cochrane Library database without any restrictions. The combined searches yielded 354 abstracts, of which 17 were reviewed in full text. Six of these were considered appropriate for inclusion in this assessment and were assigned a level of evidence rating by the panel methodologist. All 6 included studies were rated as level III evidence. RESULTS: Fluorescein angiography, a combination of 2 OCT protocols, and multicolor confocal scanning laser ophthalmoscopy (Spectralis SD-OCT; Heidelberg Engineering, Heidelberg, Germany) demonstrated the highest positive percent agreement (92%-100%; 95% confidence interval [CI], 69%-100%) and negative percent agreement (92%-100%; 95% CI, 70%-100%) with a clinical diagnosis of papilledema in children. However, results must be interpreted with caution owing to methodologic limitations, including a small sample size leading to wide CIs and an overall lack of data (there was only 1 study each for the above methods and protocols). Ultrasonographic measures showed either a high positive percent agreement (up to 95%) with low negative percent agreement (as low as 58%) or vice versa. Autofluorescence and fundus photography showed a lower positive (40%-60%) and negative (57%) percent agreement. CONCLUSIONS: Although several imaging methods demonstrated high positive and negative percent agreement with clinical diagnosis, no ophthalmic imaging method conclusively differentiated papilledema from pseudopapilledema in children because of the lack of high-quality evidence. Clinicians must continue to conduct thorough history-taking and examination and make judicious use of ancillary testing to determine which children warrant further workup for papilledema.
Chen X, Jakobiec FA, Yadav P, Werdich XQ, Fay A. Melkersson-rosenthal syndrome with isolated unilateral eyelid edema: an immunopathologic study. Ophthal Plast Reconstr Surg 2015;31(3):e70-7.Abstract

Lymphedema is caused by defective drainage of the lymphatic system. In Melkersson-Rosenthal syndrome, involvement is predominantly of the lumens with blockage of lymphatic channels by histiocytic-epithelioid cell clusters accompanied by dermal granulomas and lymphocytes. It is a localized, painless, nonitching, and nonpitting form of lymphedema. Besides the eyelids, the disease can cause lip edema, facial palsy, and/or fissured tongue. It is rare and has received little attention in the ophthalmic literature, either in its complete triadic form, or more frequently, in its monosymptomatic forms. Pathogenesis is not well understood, and there is no effective therapy. The authors describe a case of Melkesson-Rosenthal syndrome in a 45-year-old Hispanic man with isolated unilateral upper eyelid edema. Histopathological and immunohistochemical evaluations of an eyelid biopsy specimen revealed intravascular and extravascular clusters of histiocytic-epithelioid cells that were CD68/163-positive. Variable numbers of mostly T-lymphocytes were found in the epidermis, dermis, and orbicularis muscle and by virtue of the associated granulomas established the diagnosis of Melkersson-Rosenthal syndrome. CD4 helper and CD8 suppressor T-lymphocytes were equally represented. CD20 B-lymphocytes were exceedingly sparse. Conspicuous CD1a-positive Langerhans' cells were present in the epidermis, sometimes formed subepithelial loose aggregates and were also incorporated in the granulomas. The differential diagnosis includes the far more common condition of acne rosacea. Management of Melkersson-Rosenthal syndrome, and of angioedema in general, is reviewed.

Cui Y, Zhu Y, Wang JC, Lu Y, Zeng R, Katz R, Vingopoulos F, Le R, Laíns I, Wu DM, Eliott D, Vavvas DG, Husain D, Miller JW, Kim LA, Miller JB. Comparison of widefield swept-source optical coherence tomography angiography with ultra-widefield colour fundus photography and fluorescein angiography for detection of lesions in diabetic retinopathy. Br J Ophthalmol 2021;105(4):577-581.Abstract
AIMS: To compare widefield swept-source optical coherence tomography angiography (WF SS-OCTA) with ultra-widefield colour fundus photography (UWF CFP) and fluorescein angiography (UWF FA) for detecting diabetic retinopathy (DR) lesions. METHODS: This prospective, observational study was conducted at Massachusetts Eye and Ear from December 2018 to October 2019. Proliferative DR, non-proliferative DR and diabetic patients with no DR were included. All patients were imaged with a WF SS-OCTA using a Montage 15×15 mm scan. UWF CFP and UWF FA were taken by a 200°, single capture retinal imaging system. Images were independently evaluated for the presence or absence of DR lesions including microaneurysms (MAs), intraretinal microvascular abnormalities (IRMAs), neovascularisation elsewhere (NVE), neovascularisation of the optic disc (NVD) and non-perfusion areas (NPAs). All statistical analyses were performed using SPSS V.25.0. RESULTS: One hundred and fifty-two eyes of 101 participants were included in the study. When compared with UWF CFP, WF SS-OCTA was found to be superior in detecting IRMAs (p<0.001) and NVE/NVD (p=0.007). The detection rates of MAs, IRMAs, NVE/NVD and NPAs in WF SS-OCTA were comparable with UWF FA images (p>0.05). Furthermore, when we compared WF SS-OCTA plus UWF CFP with UWF FA, the detection rates of MAs, IRMAs, NVE/NVD and NPAs were identical (p>0.005). Agreement (κ=0.916) between OCTA and FA in classifying DR was excellent. CONCLUSION: WF SS-OCTA is useful for identification of DR lesions. WF SS-OCTA plus UWF CFP may offer a less invasive alternative to FA for DR diagnosis.
Cui Y, Zhu Y, Wang JC, Lu Y, Zeng R, Katz R, Wu DM, Vavvas DG, Husain D, Miller JW, Kim LA, Miller JB. Imaging Artifacts and Segmentation Errors With Wide-Field Swept-Source Optical Coherence Tomography Angiography in Diabetic Retinopathy. Transl Vis Sci Technol 2019;8(6):18.Abstract
Purpose: To analyze imaging artifacts and segmentation errors with wide-field swept-source optical coherence tomography angiography (SS-OCTA) in diabetic retinopathy (DR). Methods: We conducted a prospective, observational study at Massachusetts Eye and Ear from December 2018 to March 2019. Proliferative diabetic retinopathy (PDR), nonproliferative diabetic retinopathy (NPDR), diabetic patients with no diabetic retinopathy (DR), and healthy control eyes were included. All patients were imaged with a SS-OCTA and the Montage Angio (15 × 9 mm) was used for analysis. Images were independently evaluated by two graders using the motion artifact score (MAS). All statistical analyses were performed using SPSS 25.0 and R software. Results: One hundred thirty-six eyes in 98 participants with the montage image were included in the study. Patients with more severe stages of DR had higher MAS by trend test analysis ( < 0.05). The occurrence of segmentation error was 0% in the healthy group, 10.53% in the no DR group, 10.00% in the NPDR group, and 50% in the PDR group. Multivariate regression analysis showed that the severity of DR and dry eye were the major factors affecting MAS ( < 0.05). There were some modifiable artifacts that could be corrected to improve image quality. Conclusions: Wide field SS-OCTA assesses retinal microvascular changes by noninvasive techniques, yet distinguishing real alterations from artifacts is paramount to accurate interpretations. DR severity and dry eye correlated with MAS. Translational Relevance: Understanding contributing factors and methods to reduce artifacts is critical to routine use and clinical trial with wide-field SS-OCTA.
da Cunha LP, Cavalcante Costa MAA, de Miranda HA, Reis Guimarães J, Aihara T, Ludwig CA, Rosenblatt T, Callaway NF, Pasricha M, Al-Moujahed A, Vail D, Ji MH, Kumm J, Moshfeghi DM. Comparison between wide-field digital imaging system and the red reflex test for universal newborn eye screening in Brazil. Acta Ophthalmol 2021;Abstract
PURPOSE: To compare neonatal eye screening using the red reflex test (RRT) versus the wide-field digital imaging (WFDI) system. METHODS: Prospective cohort study. Newborns (n = 380, 760 eyes) in the Maternity Ward of Irmandade Santa Casa de Misericórdia de São Paulo hospital from May to July 2014 underwent RRT by a paediatrician and WFDI performed by the authors. Wide-field digital imaging (WFDI) images were analysed by the authors. Validity of the paediatrician's RRT was assessed by unweighted kappa [κ] statistic, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV). RESULTS: While WFDI showed abnormalities in 130 eyes (17.1%), RRT was only abnormal in 13 eyes (1.7%). Wide-field digital imaging (WFDI) detected treatable retina pathology that RRT missed including hyphema, CMV retinitis, FEVR and a vitreous haemorrhage. The sensitivity of the paediatrician's RRT to detect abnormalities was poor at 0.77% (95% confidence interval, CI, 0.02%-4.21%) with a PPV of only 7.69% (95% CI, 1.08%-38.85%). Overall, there was no agreement between screening modalities (κ = -0.02, 95% CI, -0.05 to 0.01). The number needed to screen to detect ocular abnormalities using WFDI was 5.9 newborns and to detect treatable abnormalities was 76 newborns. CONCLUSION: While RRT detects gross abnormalities that preclude visualization of the retina (i.e. media opacities and very large tumours), only WFDI consistently detects subtle treatable retina and optic nerve pathology. With a higher sensitivity than the current gold standard, universal WFDI allows for early detection and management of potentially blinding ophthalmic disease missed by RRT.
Currant H, Hysi P, Fitzgerald TW, Gharahkhani P, Bonnemaijer PWM, Senabouth A, Hewitt AW, and Consortium UKBEV, and Consortium UKBEV, Atan D, Aung T, Charng J, Choquet H, Craig J, Khaw PT, Klaver CCW, Kubo M, Ong J-S, Pasquale LR, Reisman CA, Daniszewski M, Powell JE, Pébay A, Simcoe MJ, Thiadens AAHJ, van Duijn CM, Yazar S, Jorgenson E, Macgregor S, Hammond CJ, Mackey DA, Wiggs JL, Foster PJ, Patel PJ, Birney E, Khawaja AP. Genetic variation affects morphological retinal phenotypes extracted from UK Biobank optical coherence tomography images. PLoS Genet 2021;17(5):e1009497.Abstract
Optical Coherence Tomography (OCT) enables non-invasive imaging of the retina and is used to diagnose and manage ophthalmic diseases including glaucoma. We present the first large-scale genome-wide association study of inner retinal morphology using phenotypes derived from OCT images of 31,434 UK Biobank participants. We identify 46 loci associated with thickness of the retinal nerve fibre layer or ganglion cell inner plexiform layer. Only one of these loci has been associated with glaucoma, and despite its clear role as a biomarker for the disease, Mendelian randomisation does not support inner retinal thickness being on the same genetic causal pathway as glaucoma. We extracted overall retinal thickness at the fovea, representative of foveal hypoplasia, with which three of the 46 SNPs were associated. We additionally associate these three loci with visual acuity. In contrast to the Mendelian causes of severe foveal hypoplasia, our results suggest a spectrum of foveal hypoplasia, in part genetically determined, with consequences on visual function.
D
Dahrouj M, Miller JB. Artificial Intelligence (AI) and Retinal Optical Coherence Tomography (OCT). Semin Ophthalmol 2021;36(4):341-345.Abstract
Ophthalmology has been at the forefront of medical specialties adopting artificial intelligence. This is primarily due to the "image-centric" nature of the field. Thanks to the abundance of patients' OCT scans, analysis of OCT imaging has greatly benefited from artificial intelligence to expand patient screening and facilitate clinical decision-making.In this review, we define the concepts of artificial intelligence, machine learning, and deep learning and how different artificial intelligence algorithms have been applied in OCT image analysis for disease screening, diagnosis, management, and prognosis.Finally, we address some of the challenges and limitations that might affect the incorporation of artificial intelligence in ophthalmology. These limitations mainly revolve around the quality and accuracy of datasets used in the algorithms and their generalizability, false negatives, and the cultural challenges around the adoption of the technology.
Deiner MS, Lietman TM, McLeod SD, Chodosh J, Porco TC. Surveillance Tools Emerging From Search Engines and Social Media Data for Determining Eye Disease Patterns. JAMA Ophthalmol 2016;134(9):1024-30.Abstract

IMPORTANCE: Internet-based search engine and social media data may provide a novel complementary source for better understanding the epidemiologic factors of infectious eye diseases, which could better inform eye health care and disease prevention. OBJECTIVE: To assess whether data from internet-based social media and search engines are associated with objective clinic-based diagnoses of conjunctivitis. DESIGN, SETTING, AND PARTICIPANTS: Data from encounters of 4143 patients diagnosed with conjunctivitis from June 3, 2012, to April 26, 2014, at the University of California San Francisco (UCSF) Medical Center, were analyzed using Spearman rank correlation of each weekly observation to compare demographics and seasonality of nonallergic conjunctivitis with allergic conjunctivitis. Data for patient encounters with diagnoses for glaucoma and influenza were also obtained for the same period and compared with conjunctivitis. Temporal patterns of Twitter and Google web search data, geolocated to the United States and associated with these clinical diagnoses, were compared with the clinical encounters. The a priori hypothesis was that weekly internet-based searches and social media posts about conjunctivitis may reflect the true weekly clinical occurrence of conjunctivitis. MAIN OUTCOMES AND MEASURES: Weekly total clinical diagnoses at UCSF of nonallergic conjunctivitis, allergic conjunctivitis, glaucoma, and influenza were compared using Spearman rank correlation with equivalent weekly data on Tweets related to disease or disease-related keyword searches obtained from Google Trends. RESULTS: Seasonality of clinical diagnoses of nonallergic conjunctivitis among the 4143 patients (2364 females [57.1%] and 1776 males [42.9%]) with 5816 conjunctivitis encounters at UCSF correlated strongly with results of Google searches in the United States for the term pink eye (ρ, 0.68 [95% CI, 0.52 to 0.78]; P < .001) and correlated moderately with Twitter results about pink eye (ρ, 0.38 [95% CI, 0.16 to 0.56]; P < .001) and with clinical diagnosis of influenza (ρ, 0.33 [95% CI, 0.12 to 0.49]; P < .001), but did not significantly correlate with seasonality of clinical diagnoses of allergic conjunctivitis diagnosis at UCSF (ρ, 0.21 [95% CI, -0.02 to 0.42]; P = .06) or with results of Google searches in the United States for the term eye allergy (ρ, 0.13 [95% CI, -0.06 to 0.32]; P = .19). Seasonality of clinical diagnoses of allergic conjunctivitis at UCSF correlated strongly with results of Google searches in the United States for the term eye allergy (ρ, 0.44 [95% CI, 0.24 to 0.60]; P < .001) and eye drops (ρ, 0.47 [95% CI, 0.27 to 0.62]; P < .001). CONCLUSIONS AND RELEVANCE: Internet-based search engine and social media data may reflect the occurrence of clinically diagnosed conjunctivitis, suggesting that these data sources can be leveraged to better understand the epidemiologic factors of conjunctivitis.

Diaz DJ, Wang JC, Oellers P, Lains I, Sobrin L, Husain D, Miller JW, Vavvas DG, Miller JB. Imaging the Deep Choroidal Vasculature Using Spectral Domain and Swept Source Optical Coherence Tomography Angiography. J Vitreoretin Dis 2018;2(3):146-154.Abstract
Purpose: To evaluate the deeper choroidal vasculature in eyes with various ocular disorders using spectral domain (SD) optical coherence tomography angiography (OCTA) and swept source (SS) OCTA. Methods: Patients underwent OCTA imaging with either SD-OCTA (Zeiss Cirrus Angioplex or Optovue AngioVue) or SS-OCTA (Topcon Triton). Retinal pigment epithelium (RPE) integrity, structural visualization of deep choroidal vessels on en face imaging, and OCTA of deep choroidal blood flow signal were analyzed. Choroidal blood flow was deemed present if deeper choroidal vessels appeared bright after appropriate segmentation. Results: Structural visualization of choroidal vessels was feasible in all eyes by en face imaging. In both SD-OCTA and SS-OCTA, choroidal blood flow signal was present in all eyes with overlying RPE atrophy (100% of eyes with RPE atrophy, 28.6% of all imaged eyes, P < .001). Conclusions: While choroidal vessels can be visualized anatomically in all eyes by en face imaging, choroidal blood flow detection in deep choroidal vessel is largely restricted to areas with overlying RPE atrophy. Intact RPE acts as a barrier for reliable detection of choroidal flow using current OCTA technology, inhibiting evaluation of flow in deeper choroidal vessels in most eyes.
E
Evans KK, Haygood TM, Cooper J, Culpan A-M, Wolfe JM. A half-second glimpse often lets radiologists identify breast cancer cases even when viewing the mammogram of the opposite breast. Proc Natl Acad Sci U S A 2016;113(37):10292-7.Abstract

Humans are very adept at extracting the "gist" of a scene in a fraction of a second. We have found that radiologists can discriminate normal from abnormal mammograms at above-chance levels after a half-second viewing (d' ∼ 1) but are at chance in localizing the abnormality. This pattern of results suggests that they are detecting a global signal of abnormality. What are the stimulus properties that might support this ability? We investigated the nature of the gist signal in four experiments by asking radiologists to make detection and localization responses about briefly presented mammograms in which the spatial frequency, symmetry, and/or size of the images was manipulated. We show that the signal is stronger in the higher spatial frequencies. Performance does not depend on detection of breaks in the normal symmetry of left and right breasts. Moreover, above-chance classification is possible using images from the normal breast of a patient with overt signs of cancer only in the other breast. Some signal is present in the portions of the parenchyma (breast tissue) that do not contain a lesion or that are in the contralateral breast. This signal does not appear to be a simple assessment of breast density but rather the detection of the abnormal gist may be based on a widely distributed image statistic, learned by experts. The finding that a global signal, related to disease, can be detected in parenchyma that does not contain a lesion has implications for improving breast cancer detection.

F
Ferry JA, Klepeis V, Sohani AR, Harris NL, Preffer FI, Stone JH, Grove A, Deshpande V. IgG4-related Orbital Disease and Its Mimics in a Western Population. Am J Surg Pathol 2015;Abstract

Although chronic inflammatory disorders of the ocular adnexa are relatively common, their pathogenesis is in many cases poorly understood. Recent investigation suggests that many cases of sclerosing orbital inflammation are a manifestation of IgG4-related disease; however, most patients reported have been Asian, and it is not clear whether the results of studies from the Far East can be reliably extrapolated to draw conclusions about Western patients. We evaluated 38 cases previously diagnosed as orbital inflammatory pseudotumor or chronic dacryoadenitis to determine whether our cases fulfill the criteria for IgG4-RD (IgG4-related dacryoadenitis when involving the lacrimal gland, and IgG4-related sclerosing orbital inflammation when involving orbital soft tissue). Fifteen patients had IgG4-related dacryoadenitis or orbital inflammation. These patients included 9 men and 6 women, aged 24 to 77 years (median, 64 y). Lesions involved orbital soft tissue (8 cases), lacrimal gland (6 cases), and canthus (1 case). In 1 case, focal in situ follicular neoplasia was seen in a background of IgG4-RD. In another case, a clonal IGH gene rearrangement was detected. Four patients with IgG4-RD had evidence of IgG4-RD in other anatomic sites. Five patients, 1 man and 4 women, aged 26 to 74 years (median 50 y) had orbital lesions (2 involving lacrimal gland, 3 involving soft tissue) suspicious for, but not diagnostic of, IgG4-RD. Of 16 patients with IgG4-RD or probable IgG4-RD with information available regarding the course of their disease, 11 patients experienced recurrent or persistent orbital disease. However, no patient developed lymphoma, and no patient died of complications of IgG4-RD. Eighteen patients had lesions not representing IgG4-RD. They included 6 male and 12 female individuals aged 6 to 77 years (median, 47 y). These patients had a variety of diseases, including granulomatosis with polyangiitis (3 cases), Rosai-Dorfman disease (1 case), nonspecific chronic inflammation and fibrosis involving lacrimal gland or soft tissue (12 cases), and others. Clinical and pathologic findings among our patients with IgG4-RD involving the orbit are similar to those previously described in Asian patients. Careful evaluation of histologic and immunophenotypic features and clinical correlation are required to distinguish orbital IgG4-RD from other sclerosing inflammatory lesions in the orbit.

G
Gaier ED, Wang M, Gilbert AL, Rizzo JF, Cestari DM, Miller JB. Quantitative analysis of optical coherence tomographic angiography (OCT-A) in patients with non-arteritic anterior ischemic optic neuropathy (NAION) corresponds to visual function. PLoS One 2018;13(6):e0199793.Abstract
PURPOSE: Non-arteritic anterior ischemic optic neuropathy (NAION) is the most common cause of non-glaucomatous optic neuropathy in older adults. Optical coherence tomographic angiography (OCT-A) is an emerging, non-invasive method to study the microvasculature of the posterior pole, including the optic nerve head. The goal of this study was to assess the vascular changes in the optic nerve head and peripapillary area associated with NAION using OCT-A. DESIGN: Retrospective comparative case series. METHODS: We performed OCT-A in 25 eyes (7 acute and 18 non-acute) in 19 patients with NAION. Fellow, unaffected eyes were analyzed for comparison. Patent macro- and microvascular densities were quantified in the papillary and peripapillary regions of unaffected, acutely affected, and non-acutely affected eyes and compared across these groups according to laminar segment and capillary sampling region, and with respect to performance on automated visual field testing. RESULTS: In acutely affected eyes, OCT-A revealed a reduction in the signal from the major retinal vessels and dilation of patent superficial capillaries in the peripapillary area. By contrast, non-acutely affected eyes showed attenuation of patent capillaries. The peripapillary choriocapillaris was obscured by edema in acute cases, but was similar between non-acute and unaffected eyes. The degree of dilation of the superficial microvasculature in the acute phase and attenuation in the non-acute phase each correlated inversely with visual field performance. The region of reduced patent capillary density correlated with the location of visual field defects in 80% of acute cases and 80% of non-acute cases. CONCLUSIONS: OCT-A reveals a dynamic shift in the superficial capillary network of the optic nerve head with strong functional correlates in both the acute and non-acute phases of NAION. Further study may validate OCT-A as a useful adjunctive diagnostic tool in the evaluation of ischemic optic neuropathy.
García-Posadas L, Contreras-Ruiz L, Soriano-Romaní L, Dartt DA, Diebold Y. Conjunctival Goblet Cell Function: Effect of Contact Lens Wear and Cytokines. Eye Contact Lens 2016;42(2):83-90.Abstract

This review focuses on conjunctival goblet cells and their essential function in the maintenance of eye health. The main function of goblet cells is to produce and secrete mucins that lubricate the ocular surface. An excess or a defect in those mucins leads to several alterations that makes goblet cells central players in maintaining the proper mucin balance and ensuring the correct function of ocular surface tissues. A typical pathology that occurs with mucous deficiency is dry eye disease, whereas the classical example of mucous hyperproduction is allergic conjunctivitis. In this review, we analyze how goblet cell number and function can be altered in these diseases and in contact lens (CL) wearers. We found that most published studies focused exclusively on the goblet cell number. However, recent advances have demonstrated that, along with mucin secretion, goblet cells are also able to secrete cytokines and respond to them. We describe the effect of different cytokines on goblet cell proliferation and secretion. We conclude that it is important to further explore the effect of CL wear and cytokines on conjunctival goblet cell function.

Gupta MP, Dow E, Jeng-Miller KW, Mukai S, Orlin A, Xu K, Yonekawa Y, Chan PRV. SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY FINDINGS IN COATS DISEASE. Retina 2019;39(6):1177-1185.Abstract
PURPOSE: To evaluate microstructural retinal abnormalities on spectral domain optical coherence tomography (SD-OCT) imaging of eyes with Coats disease. METHODS: This is a multicenter, retrospective study in which SD-OCT images of patients with treatment-naive Coats disease were correlated with clinical examination and visual acuity and, when available, followed longitudinally over time. RESULTS: Macular SD-OCT of 27 eyes with Coats disease revealed intraretinal edema (59%), intraretinal exudates (67%), subretinal fluid (37%), subretinal exudate (48%), ellipsoid zone disruption (52%), external limiting membrane disruption (41%), and subfoveal nodule (26%). All these microstructural abnormalities correlated with worse baseline and final visual acuities (P < 0.05) on univariate analysis, except for intraretinal edema which exhibited a nonstatistically significant trend toward worse baseline visual acuity (P = 0.16). Within stage 2b eyes, external limiting membrane disruption and subretinal nodule on SD-OCT were associated with worse baseline visual acuity (P = 0.02 for both), and there was a trend toward worse final visual acuity with external limiting membrane disruption and subretinal nodule (P = 0.17 for both) and worse baseline (P = 0.08) and final (P = 0.13) visual acuities with ellipsoid zone disruption. No microstructural abnormalities were noted on OCT of fellow eyes. CONCLUSION: Spectral domain OCT can identify microstructural abnormalities in Coats disease that are associated on univariate analysis with worse baseline visual acuity and visual prognosis. Further larger studies are necessary.
H
Hanumunthadu D, Lescrauwaet B, Jaffe M, Sadda SV, Wiecek E, Hubschman JP, Patel PJ. Clinical Update on Metamorphopsia: Epidemiology, Diagnosis and Imaging. Curr Eye Res 2021;:1-15.Abstract
Purpose: To discuss the pathophysiology of metamorphopsia, its characterisation using retinal imaging and methods of assessment of patient symptoms and visual function.Methods: A literature search of electronic databases was performedResults: Metamorphopsia has commonly been associated with vitreomacular interface disorders (such as epiretinal membrane) and has also regularly been noted in diseases of the retina and choroid, particularly age-related macular degeneration and central serous chorioretinopathy. Developments in optical coherence tomography retinal imaging have enabled improved imaging of the foveal microstructure and have led to the localisation of the pathophysiology of metamorphopsia within the retinal layers of the macula. Alteration of alignment of inner and outer retinal layers at various retinal loci has been identified using multimodal imaging in patients with metamorphopsia in a range of conditions. Although the Amsler Grid assessment of metamorphopsia is a useful clinical indicator, new emerging methods of metamorphopsia assessment with psychophysical tests such as M-CHARTS and preferential hyperacuity perimetry, have been developed.Conclusions: It appears that there is a complex relationship between visual acuity and metamorphopsia symptoms that vary between retinal conditions. Although metamorphopsia has traditionally been challenging to measure in the clinic, advances in technology promise more robust, easy-to-use tests. It is possible that home assessment of metamorphopsia, particularly in conditions such as age-related macular degeneration, may help to guide the need for further clinic evaluation and consideration of treatment.
I
Islam R, Jackson C, Eidet JR, Messelt EB, Corraya RM, Lyberg T, Griffith M, Dartt DA, Utheim TP. Effect of Storage Temperature on Structure and Function of Cultured Human Oral Keratinocytes. PLoS One 2015;10(6):e0128306.Abstract

PURPOSE/AIMS: To assess the effect of storage temperature on the viability, phenotype, metabolism, and morphology of cultured human oral keratinocytes (HOK). MATERIALS AND METHODS: Cultured HOK cells were stored in HEPES- and sodium bicarbonate-buffered Minimum Essential Medium (MEM) at nine temperatures in approximately 4°C increments from 4°C to 37°C for seven days. Cells were characterized for viability by calcein fluorescence, phenotype retention by immunocytochemistry, metabolic parameters (pH, glucose, lactate, and O2) within the storage medium by blood gas analysis, and morphology by scanning electron microscopy and light microscopy. RESULTS: Relative to the cultured, but non-stored control cells, a high percentage of viable cells were retained only in the 12°C and 16°C storage groups (85%±13% and 68%±10%, respectively). Expression of ABCG2, Bmi1, C/EBPδ, PCNA, cytokeratin 18, and caspase-3 were preserved after storage in the 5 groups between 4°C and 20°C, compared to the non-stored control. Glucose, pH and pO2 in the storage medium declined, whereas lactate increased with increasing storage temperature. Morphology was best preserved following storage of the three groups between 12°C, 16°C, and 20°C. CONCLUSION: We conclude that storage temperatures of 12°C and 16°C were optimal for maintenance of cell viability, phenotype, and morphology of cultured HOK. The storage method described in the present study may be applicable for other cell types and tissues; thus its significance may extend beyond HOK and the field of ophthalmology.

J
Jabroun MN, AlWattar BK, Fulton AB. Optical Coherence Tomography Angiography in Prematurity. Semin Ophthalmol 2021;36(4):264-269.Abstract
Purpose: During normal foveal development there is a close interaction between the neurosensory and vascular elements of the fovea making it vulnerable to prematurity and retinopathy of prematurity (ROP). We aim to assess this potential effect on foveal development in preterms evaluated simultaneously with both optical coherence tomography (OCT) and OCT angiography (OCTA).Method: Unrestricted literature search in the PubMed and Cochrane library databases yielded 20 distinct citations. Fifteen were relevant and reviewed.Results: In preterms, OCTA demonstrated a significant decrease in the foveal avascular zone area and an increase in foveal vessel density. OCT showed a decrease in foveal pit depth and an increase in the thickness of the subfoveal retinal layers. Some studies correlated these changes with reduced vision.Conclusion: Changes in the vascular and neurosensory retina were found in premature children. It remains unclear whether this is related to prematurity alone or ROP and its treatment.
K
Kras A, Celi LA, Miller JB. Accelerating ophthalmic artificial intelligence research: the role of an open access data repository. Curr Opin Ophthalmol 2020;31(5):337-350.Abstract
PURPOSE OF REVIEW: Artificial intelligence has already provided multiple clinically relevant applications in ophthalmology. Yet, the explosion of nonstandardized reporting of high-performing algorithms are rendered useless without robust and streamlined implementation guidelines. The development of protocols and checklists will accelerate the translation of research publications to impact on patient care. RECENT FINDINGS: Beyond technological scepticism, we lack uniformity in analysing algorithmic performance generalizability, and benchmarking impacts across clinical settings. No regulatory guardrails have been set to minimize bias or optimize interpretability; no consensus clinical acceptability thresholds or systematized postdeployment monitoring has been set. Moreover, stakeholders with misaligned incentives deepen the landscape complexity especially when it comes to the requisite data integration and harmonization to advance the field. Therefore, despite increasing algorithmic accuracy and commoditization, the infamous 'implementation gap' persists. Open clinical data repositories have been shown to rapidly accelerate research, minimize redundancies and disseminate the expertise and knowledge required to overcome existing barriers. Drawing upon the longstanding success of existing governance frameworks and robust data use and sharing agreements, the ophthalmic community has tremendous opportunity in ushering artificial intelligence into medicine. By collaboratively building a powerful resource of open, anonymized multimodal ophthalmic data, the next generation of clinicians can advance data-driven eye care in unprecedented ways. SUMMARY: This piece demonstrates that with readily accessible data, immense progress can be achieved clinically and methodologically to realize artificial intelligence's impact on clinical care. Exponentially progressive network effects can be seen by consolidating, curating and distributing data amongst both clinicians and data scientists.

Pages