Mobility Enhancement & Vision Rehabilitation

Costela FM, Saunders DR, Rose DJ, Katjezovic S, Reeves SM, Woods RL. People With Central Vision Loss Have Difficulty Watching Videos. Invest Ophthalmol Vis Sci 2019;60(1):358-364.Abstract
Purpose: People with central vision loss (CVL) often report difficulties watching video. We objectively evaluated the ability to follow the story (using the information acquisition method). Methods: Subjects with CVL (n = 23) or normal vision (NV, n = 60) described the content of 30-second video clips from movies and documentaries. We derived an objective information acquisition (IA) score for each response using natural-language processing. To test whether the impact of CVL was simply due to reduced resolution, another group of NV subjects (n = 15) described video clips with defocus blur that reduced visual acuity to 20/50 to 20/800. Mixed models included random effects correcting for differences between subjects and between the clips, with age, gender, cognitive status, and education as covariates. Results: Compared to both NV groups, IA scores were worse for the CVL group (P < 0.001). IA reduced with worsening visual acuity (P < 0.001), and the reduction with worsening visual acuity was greater for the CVL group than the NV-defocus group (P = 0.01), which was seen as a greater discrepancy at worse levels of visual acuity. Conclusions: The IA method was able to detect difficulties in following the story experienced by people with CVL. Defocus blur failed to recreate the CVL experience. IA is likely to be useful for evaluations of the effects of vision rehabilitation.
Costela FM, Reeves SM, Woods RL. An implementation of Bubble Magnification did not improve the video comprehension of individuals with central vision loss. Ophthalmic Physiol Opt 2021;Abstract
PURPOSE: People with central vision loss (CVL) watch television, videos and movies, but often report difficulty and have reduced video comprehension. An approach to assist viewing videos is electronic magnification of the video itself, such as Bubble Magnification. METHODS: We created a Bubble Magnification technique that displayed a magnified segment around the centre of interest (COI) as determined by the gaze of participants with normal vision. The 15 participants with CVL viewed video clips shown with 2× and 3× Bubble Magnification, and unedited. We measured video comprehension and gaze coherence. RESULTS: Video comprehension was significantly worse with both 2× (p = 0.01) and 3× Bubble Magnification (p < 0.001) than the unedited video. There was no difference in gaze coherence across conditions (p ≥ 0.58). This was unexpected because we expected a benefit in both video comprehension and gaze coherence. This initial attempt to implement the Bubble Magnification method had flaws that probably reduced its effectiveness. CONCLUSIONS: In the future, we propose alternative implementations of Bubble Magnification, such as variable magnification and bubble size. This study is a first step in the development of an intelligent-magnification approach to providing a vision rehabilitation aid to assist people with CVL.
Costela FM, Saunders DR, Kajtezovic S, Rose DJ, Woods RL. Measuring the Difficulty Watching Video With Hemianopia and an Initial Test of a Rehabilitation Approach. Transl Vis Sci Technol 2018;7(4):13.Abstract
Purpose: If you cannot follow the story when watching a video, then the viewing experience is degraded. We measured the difficulty of following the story, defined as the ability to acquire visual information, which is experienced by people with homonymous hemianopia (HH). Further, we proposed and tested a novel rehabilitation aid. Methods: Participants watched 30-second directed video clips. Following each video clip, subjects described the visual content of the clip. An objective score of information acquisition (IA) was derived by comparing each new response to a control database of descriptions of the same clip using natural language processing. Study 1 compared 60 participants with normal vision (NV) to 24 participants with HH to test the hypothesis that participants with HH would score lower than NV participants, consistent with reports from people with HH that describe difficulties in video watching. In the second study, 21 participants with HH viewed clips with or without a superimposed dynamic cue that we called a content guide. We hypothesized that IA scores would increase using this content guide. Results: The HH group had a significantly lower IA score, with an average of 2.8, compared with 4.3 shared words of the NV group (mixed-effects regression, < 0.001). Presence of the content guide significantly increased the IA score by 0.5 shared words ( = 0.03). Conclusions: Participants with HH had more difficulty acquiring information from a video, which was objectively demonstrated (reduced IA score). The content guide improved information acquisition, but not to the level of people with NV. Translational Relevance: The value as a possible rehabilitation aid of the content guide warrants further study that involves an extended period of content-guide use and a randomized controlled trial.
Costela FM, Woods RL. When Watching Video, Many Saccades Are Curved and Deviate From a Velocity Profile Model. Front Neurosci 2018;12:960.Abstract
Commonly, saccades are thought to be ballistic eye movements, not modified during flight, with a straight path and a well-described velocity profile. However, they do not always follow a straight path and studies of saccade curvature have been reported previously. In a prior study, we developed a real-time, saccade-trajectory prediction algorithm to improve the updating of gaze-contingent displays and found that saccades with a curved path or that deviated from the expected velocity profile were not well fit by our saccade-prediction algorithm (velocity-profile deviation), and thus had larger updating errors than saccades that had a straight path and had a velocity profile that was fit well by the model. Further, we noticed that the curved saccades and saccades with high velocity-profile deviations were more common than we had expected when participants performed a natural-viewing task. Since those saccades caused larger display updating errors, we sought a better understanding of them. Here we examine factors that could affect curvature and velocity profile of saccades using a pool of 218,744 saccades from 71 participants watching "Hollywood" video clips. Those factors included characteristics of the participants (e.g., age), of the videos (importance of faces for following the story, genre), of the saccade (e.g., magnitude, direction), time during the session (e.g., fatigue) and presence and timing of scene cuts. While viewing the video clips, saccades were most likely horizontal or vertical over oblique. Measured curvature and velocity-profile deviation had continuous, skewed frequency distributions. We used mixed-effects regression models that included cubic terms and found a complex relationship between curvature, velocity-profile deviation and saccade duration (or magnitude). Curvature and velocity-profile deviation were related to some video-dependent features such as lighting, face presence, or nature and human figure content. Time during the session was a predictor for velocity profile deviations. Further, we found a relationship for saccades that were in flight at the time of a scene cut to have higher velocity-profile deviations and lower curvature in univariable models. Saccades characteristics vary with a variety of factors, which suggests complex interactions between oculomotor control and scene content that could be explored further.
Costela FM, Sheldon SS, Walker B, Woods RL. People with Hemianopia Report Difficulty with TV, Computer, Cinema Use, and Photography. Optom Vis Sci 2018;95(5):428-434.Abstract
SIGNIFICANCE: Our survey found that participants with hemianopia report more difficulties watching video in various formats, including television (TV), on computers, and in a movie theater, compared with participants with normal vision (NV). These reported difficulties were not as marked as those reported by people with central vision loss. PURPOSE: The aim of this study was to survey the viewing experience (e.g., frequency, difficulty) of viewing video on TV, computers and portable visual display devices, and at the cinema of people with hemianopia and NV. This information may guide vision rehabilitation. METHODS: We administered a cross-sectional survey to investigate the viewing habits of people with hemianopia (n = 91) or NV (n = 192). The survey, consisting of 22 items, was administered either in person or in a telephone interview. Descriptive statistics are reported. RESULTS: There were five major differences between the hemianopia and NV groups. Many participants with hemianopia reported (1) at least "some" difficulty watching TV (39/82); (2) at least "some" difficulty watching video on a computer (16/62); (3) never attending the cinema (30/87); (4) at least some difficulty watching movies in the cinema (20/56), among those who did attend the cinema; and (5) never taking photographs (24/80). Some people with hemianopia reported methods that they used to help them watch video, including video playback and head turn. CONCLUSIONS: Although people with hemianopia report more difficulty with viewing video on TV and at the cinema, we are not aware of any rehabilitation methods specifically designed to assist people with hemianopia to watch video. The results of this survey may guide future vision rehabilitation.
Cunningham CA, Wolfe JM. The role of object categories in hybrid visual and memory search. J Exp Psychol Gen 2014;143(4):1585-99.Abstract
In hybrid search, observers search for any of several possible targets in a visual display containing distracting items and, perhaps, a target. Wolfe (2012) found that response times (RTs) in such tasks increased linearly with increases in the number of items in the display. However, RT increased linearly with the log of the number of items in the memory set. In earlier work, all items in the memory set were unique instances (e.g., this apple in this pose). Typical real-world tasks involve more broadly defined sets of stimuli (e.g., any "apple" or, perhaps, "fruit"). The present experiments show how sets or categories of targets are handled in joint visual and memory search. In Experiment 1, searching for a digit among letters was not like searching for targets from a 10-item memory set, though searching for targets from an N-item memory set of arbitrary alphanumeric characters was like searching for targets from an N-item memory set of arbitrary objects. In Experiment 2, observers searched for any instance of N sets or categories held in memory. This hybrid search was harder than search for specific objects. However, memory search remained logarithmic. Experiment 3 illustrates the interaction of visual guidance and memory search when a subset of visual stimuli are drawn from a target category. Furthermore, we outline a conceptual model, supported by our results, defining the core components that would be necessary to support such categorical hybrid searches.
Dagi LR, Tiedemann LM, Heidary G, Robson CD, Hall AM, Zurakowski D. Using spectral-domain optical coherence tomography to detect optic neuropathy in patients with craniosynostosis. J AAPOS 2014;18(6):543-9.Abstract

BACKGROUND: Detecting and monitoring optic neuropathy in patients with craniosynostosis is a clinical challenge due to limited cooperation, and subjective measures of visual function. The purpose of this study was to appraise the correlation of peripapillary retinal nerve fiber layer (RNFL) thickness measured by spectral-domain ocular coherence tomography (SD-OCT) with indication of optic neuropathy based on fundus examination. METHODS: The medical records of all patients with craniosynostosis presenting for ophthalmic evaluation during 2013 were retrospectively reviewed. The following data were abstracted from the record: diagnosis, historical evidence of elevated intracranial pressure, current ophthalmic evaluation and visual field results, and current peripapillary RNFL thickness. RESULTS: A total of 54 patients were included (mean age, 10.6 years [range, 2.4-33.8 years]). Thirteen (24%) had evidence of optic neuropathy based on current fundus examination. Of these, 10 (77%) demonstrated either peripapillary RNFL elevation and papilledema or depression with optic atrophy. Sensitivity for detecting optic atrophy was 88%; for papilledema, 60%; and for either form of optic neuropathy, 77%. Specificity was 94%, 90%, and 83%, respectively. Kappa agreement was substantial for optic atrophy (κ = 0.73) and moderate for papilledema (κ = 0.39) and for either form of optic neuropathy (κ = 0.54). Logistic regression indicated that peripapillary RNFL thickness was predictive of optic neuropathy (P < 0.001). Multivariable analysis demonstrated that RNFL thickness measurements were more sensitive at detecting optic neuropathy than visual field testing (likelihood ratio = 10.02; P = 0.002). Sensitivity and specificity of logMAR visual acuity in detecting optic neuropathy were 15% and 95%, respectively. CONCLUSIONS: Peripapillary RNFL thickness measured by SD-OCT provides adjunctive evidence for identifying optic neuropathy in patients with craniosynostosis and appears more sensitive at detecting optic atrophy than papilledema.

Dartt DA, Masli S. Conjunctival epithelial and goblet cell function in chronic inflammation and ocular allergic inflammation. Curr Opin Allergy Clin Immunol 2014;14(5):464-70.Abstract

PURPOSE OF REVIEW: Although conjunctival goblet cells are a major cell type in ocular mucosa, their responses during ocular allergy are largely unexplored. This review summarizes the recent findings that provide key insights into the mechanisms by which their function and survival are altered during chronic inflammatory responses, including ocular allergy. RECENT FINDINGS: Conjunctiva represents a major component of the ocular mucosa that harbors specialized lymphoid tissue. Exposure of mucin-secreting goblet cells to allergic and inflammatory mediators released by the local innate and adaptive immune cells modulates proliferation, secretory function, and cell survival. Allergic mediators like histamine, leukotrienes, and prostaglandins directly stimulate goblet cell mucin secretion and consistently increase goblet cell proliferation. Goblet cell mucin secretion is also detectable in a murine model of allergic conjunctivitis. Additionally, primary goblet cell cultures allow evaluation of various inflammatory cytokines with respect to changes in goblet cell mucin secretion, proliferation, and apoptosis. These findings in combination with the preclinical mouse models help understand the goblet cell responses and their modulation during chronic inflammatory diseases, including ocular allergy. SUMMARY: Recent findings related to conjunctival goblet cells provide the basis for novel therapeutic approaches, involving modulation of goblet cell mucin production, to improve treatment of ocular allergies.

Dockery DM, Krzystolik MG. The Use of Mobile Applications as Low-Vision Aids: A Pilot Study. R I Med J (2013) 2020;103(8):69-72.Abstract
OBJECTIVE: To determine the most commonly used and highest-rated mobile applications (apps) for low-vision aids. METHODS: This was a convenience sample survey. Patients known to use low-vision apps at a nonprofit low-vision center (INSIGHT, Warwick, RI) were contacted by phone between June and September 2019. INCLUSION CRITERIA: age 18+, Snellen visual acuity (VA) below 20/70, and the use of low-vision mobile apps for at least one month. A standardized script was used to record survey data and app ratings were evaluated by patients with a scale of one to five, one being the lowest and five being the highest. RESULTS: Of the sample (n=11), nine patients (81.8%) stated they used an iPhone for low-vision mobile apps. A list of 14 mobile apps was identified: the two most commonly used apps were Seeing AI (81.8%) and Be My Eyes (63.6%); their average ratings were 4.43/5 and 4.75/5, respectively. CONCLUSIONS: This survey suggests that Seeing AI and Be My Eyes are useful apps to help low- vision patients with activities of daily living.
Doherty AL, Peli E, Luo G. Hazard detection with a monocular bioptic telescope. Ophthalmic Physiol Opt 2015;35(5):530-9.Abstract

PURPOSE: The safety of bioptic telescopes for driving remains controversial. The ring scotoma, an area to the telescope eye due to the telescope magnification, has been the main cause of concern. This study evaluates whether bioptic users can use the fellow eye to detect in hazards driving videos that fall in the ring scotoma area. METHODS: Twelve visually impaired bioptic users watched a series of driving hazard perception training videos and responded as soon as they detected a hazard while reading aloud letters presented on the screen. The letters were placed such that when reading them through the telescope the hazard fell in the ring scotoma area. Four conditions were tested: no bioptic and no reading, reading without bioptic, reading with a bioptic that did not occlude the fellow eye (non-occluding bioptic), and reading with a bioptic that partially-occluded the fellow eye. Eight normally sighted subjects performed the same task with the partially occluding bioptic detecting lateral hazards (blocked by the device scotoma) and vertical hazards (outside the scotoma) to further determine the cause-and-effect relationship between hazard detection and the fellow eye. RESULTS: There were significant differences in performance between conditions: 83% of hazards were detected with no reading task, dropping to 67% in the reading task with no bioptic, to 50% while reading with the non-occluding bioptic, and 34% while reading with the partially occluding bioptic. For normally sighted, detection of vertical hazards (53%) was significantly higher than lateral hazards (38%) with the partially occluding bioptic. CONCLUSIONS: Detection of driving hazards is impaired by the addition of a secondary reading like task. Detection is further impaired when reading through a monocular telescope. The effect of the partially-occluding bioptic supports the role of the non-occluded fellow eye in compensating for the ring scotoma.

Dorr M, Lesmes LA, Lu Z-L, Bex PJ. Rapid and reliable assessment of the contrast sensitivity function on an iPad. Invest Ophthalmol Vis Sci 2013;54(12):7266-73.Abstract
PURPOSE: Letter acuity, the predominant clinical assessment of vision, is relatively insensitive to slow vision loss caused by eye disease. While the contrast sensitivity function (CSF) has demonstrated the potential to monitor the slow progress of blinding eye diseases, current tests of CSF lack the reliability or ease-of-use to capture changes in vision timely. To improve the current state of home testing for vision, we have developed and validated a computerized adaptive test on a commercial tablet device (iPad) that provides an efficient and easy-to-use assessment of the CSF. METHODS: We evaluated the reliability, accuracy, and flexibility of tablet-based CSF assessment. Repeated tablet-based assessments of the spatial CSF, obtained from four normally-sighted observers, which each took 3 to 5 minutes, were compared to measures obtained on CRT-based laboratory equipment; additional tablet-based measures were obtained from six subjects under three different luminance conditions. RESULTS: A Bland-Altman analysis demonstrated that tablet-based assessment was reliable for estimating sensitivities at specific spatial frequencies (coefficient of repeatability 0.14-0.40 log units). The CRT- and tablet-based results demonstrated excellent agreement with absolute mean sensitivity differences <0.05 log units. The tablet-based test also reliably identified changes in contrast sensitivity due to different luminance conditions. CONCLUSIONS: We demonstrate that CSF assessment on a mobile device is indistinguishable from that obtained with specialized laboratory equipment. We also demonstrate better reliability than tests used currently for clinical trials of ophthalmic therapies, drugs, and devices.
Draschkow D, Wolfe JM, Võ MLH. Seek and you shall remember: scene semantics interact with visual search to build better memories. J Vis 2014;14(8):10.Abstract

Memorizing critical objects and their locations is an essential part of everyday life. In the present study, incidental encoding of objects in naturalistic scenes during search was compared to explicit memorization of those scenes. To investigate if prior knowledge of scene structure influences these two types of encoding differently, we used meaningless arrays of objects as well as objects in real-world, semantically meaningful images. Surprisingly, when participants were asked to recall scenes, their memory performance was markedly better for searched objects than for objects they had explicitly tried to memorize, even though participants in the search condition were not explicitly asked to memorize objects. This finding held true even when objects were observed for an equal amount of time in both conditions. Critically, the recall benefit for searched over memorized objects in scenes was eliminated when objects were presented on uniform, non-scene backgrounds rather than in a full scene context. Thus, scene semantics not only help us search for objects in naturalistic scenes, but appear to produce a representation that supports our memory for those objects beyond intentional memorization.

E P, P S. Bitemporal hemianopia; its unique binocular complexities and a novel remedy. Ophthalmic Physiol Opt 2014;34(2):233-42.
Feldstein IT, Peli E. Pedestrians Accept Shorter Distances to Light Vehicles Than Dark Ones When Crossing the Street. Perception 2020;49(5):558-566.Abstract
Does the brightness of an approaching vehicle affect a pedestrian's crossing decision? Thirty participants indicated their street-crossing intentions when facing approaching light or dark vehicles. The experiment was conducted in a real daylight environment and, additionally, in a corresponding virtual one. A real road with actual cars provides high face validity, while a virtual environment ensures the scenario's precise reproducibility and repeatability for each participant. In both settings, participants judged dark vehicles to be a more imminent threat-either closer or moving faster-when compared with light ones. Secondary results showed that participants accepted a significantly shorter time-to-contact when crossing the street in the virtual setting than on the real road.
Feldstein IT, Dyszak GN. Road crossing decisions in real and virtual environments: A comparative study on simulator validity. Accid Anal Prev 2020;137:105356.Abstract
Virtual reality (VR) is a valuable tool for the assessment of human perception and behavior in a risk-free environment. Investigators should, however, ensure that the used virtual environment is validated in accordance with the experiment's intended research question since behavior in virtual environments has been shown to differ to behavior in real environments. This article presents the street crossing decisions of 30 participants who were facing an approaching vehicle and had to decide at what moment it was no longer safe to cross, applying the step-back method. The participants executed the task in a real environment and also within a highly immersive VR setup involving a head-mounted display (HMD). The results indicate significant differences between the two settings regarding the participants' behaviors. The time-to-contact of approaching vehicles was significantly lower for crossing decisions in the virtual environment than for crossing decisions in the real one. Additionally, it was demonstrated that participants based their crossing decisions in the real environment on the temporal distance of the approaching vehicle (i.e., time-to-contact), whereas the crossing decisions in the virtual environment seemed to depend on the vehicle's spatial distance, neglecting the vehicle's velocity. Furthermore, a deeper analysis suggests that crossing decisions were not affected by factors such as the participant's gender or the order in which they faced the real and the virtual environment.
Feldstein LT. Impending Collision Judgment from an Egocentric Perspective in Real and Virtual Environments: A Review. Perception 2019;48(9):769-795.
Ferrari C, Vecchi T, Merabet LB, Cattaneo Z. Blindness and social trust: The effect of early visual deprivation on judgments of trustworthiness. Conscious Cogn 2017;55:156-164.Abstract
Investigating the impact of early visual deprivation on evaluations related to social trust has received little attention to date. This is despite consistent evidence suggesting that early onset blindness may interfere with the normal development of social skills. In this study, we investigated whether early blindness affects judgments of trustworthiness regarding the actions of an agent, with trustworthiness representing the fundamental dimension in the social evaluation. Specifically, we compared performance between a group of early blind individuals with that of sighted controls in their evaluation of trustworthiness of an agent after hearing a pair of two positive or two negative social behaviors (impression formation). Participants then repeated the same evaluation following the presentation of a third (consistent or inconsistent) behavior regarding the same agent (impression updating). Overall, blind individuals tended to give similar evaluations compared to their sighted counterparts. However, they also valued positive behaviors significantly more than sighted controls when forming their impression of an agent's trustworthiness. Moreover, when inconsistent information was provided, blind individuals were more prone to revise their initial evaluation compared to controls. These results suggest that early visual deprivation may have a dramatic effect on the evaluation of social factors such as trustworthiness.
Gao Z, Hwang A, Zhai G, Peli E. Correcting geometric distortions in stereoscopic 3D imaging. PLoS One 2018;13(10):e0205032.Abstract
Motion in a distorted virtual 3D space may cause visually induced motion sickness. Geometric distortions in stereoscopic 3D can result from mismatches among image capture, display, and viewing parameters. Three pairs of potential mismatches are considered, including 1) camera separation vs. eye separation, 2) camera field of view (FOV) vs. screen FOV, and 3) camera convergence distance (i.e., distance from the cameras to the point where the convergence axes intersect) vs. screen distance from the observer. The effect of the viewer's head positions (i.e., head lateral offset from the screen center) is also considered. The geometric model is expressed as a function of camera convergence distance, the ratios of the three parameter-pairs, and the offset of the head position. We analyze the impacts of these five variables separately and their interactions on geometric distortions. This model facilitates insights into the various distortions and leads to methods whereby the user can minimize geometric distortions caused by some parameter-pair mismatches through adjusting of other parameter pairs. For example, in postproduction, viewers can correct for a mismatch between camera separation and eye separation by adjusting their distance from the real screen and changing the effective camera convergence distance.
García-Pérez MA, Peli E. Aniseikonia Tests: The Role of Viewing Mode, Response Bias, and Size-Color Illusions. Transl Vis Sci Technol 2015;4(3):9.Abstract

PURPOSE: To identify the factors responsible for the poor validity of the most common aniseikonia tests, which involve size comparisons of red-green stimuli presented haploscopically. METHODS: Aniseikonia was induced by afocal size lenses placed before one eye. Observers compared the sizes of semicircles presented haploscopically via color filters. The main factor under study was viewing mode (free viewing versus short presentations under central fixation). To eliminate response bias, a three-response format allowed observers to respond if the left, the right, or neither semicircle appeared larger than the other. To control decisional (criterion) bias, measurements were taken with the lens-magnified stimulus placed on the left and on the right. To control for size-color illusions, measurements were made with color filters in both arrangements before the eyes and under binocular vision (without color filters). RESULTS: Free viewing resulted in a systematic underestimation of lens-induced aniseikonia that was absent with short presentations. Significant size-color illusions and decisional biases were found that would be mistaken for aniseikonia unless appropriate action is taken. CONCLUSIONS: To improve their validity, aniseikonia tests should use short presentations and include control conditions to prevent contamination from decisional/response biases. If anaglyphs are used, presence of size-color illusions must be checked for. TRANSLATIONAL RELEVANCE: We identified optimal conditions for administration of aniseikonia tests and appropriate action for differential diagnosis of aniseikonia in the presence of response biases or size-color illusions. Our study has clinical implications for aniseikonia management.

Goldstein JE, Jackson ML, Fox SM, Deremeik JT, Massof RW, Massof RW. Clinically Meaningful Rehabilitation Outcomes of Low Vision Patients Served by Outpatient Clinical Centers. JAMA Ophthalmol 2015;133(7):762-9.Abstract

IMPORTANCE: To facilitate comparative clinical outcome research in low vision rehabilitation, we must use patient-centered measurements that reflect clinically meaningful changes in visual ability. OBJECTIVE: To quantify the effects of currently provided low vision rehabilitation (LVR) on patients who present for outpatient LVR services in the United States. DESIGN, SETTING, AND PARTICIPANTS: Prospective, observational study of new patients seeking outpatient LVR services. From April 2008 through May 2011, 779 patients from 28 clinical centers in the United States were enrolled in the Low Vision Rehabilitation Outcomes Study. The Activity Inventory, a visual function questionnaire, was administered to measure overall visual ability and visual ability in 4 functional domains (reading, mobility, visual motor function, and visual information processing) at baseline and 6 to 9 months after usual LVR care. The Geriatric Depression Scale, Telephone Interview for Cognitive Status, and Medical Outcomes Study 36-Item Short-Form Health Survey physical functioning questionnaires were also administered to measure patients' psychological, cognitive, and physical health states, respectively, and clinical findings of patients were provided by study centers. MAIN OUTCOMES AND MEASURES: Mean changes in the study population and minimum clinically important differences in the individual in overall visual ability and in visual ability in 4 functional domains as measured by the Activity Inventory. RESULTS: Baseline and post-rehabilitation measures were obtained for 468 patients. Minimum clinically important differences (95% CIs) were observed in nearly half (47% [95% CI, 44%-50%]) of patients in overall visual ability. The prevalence rates of patients with minimum clinically important differences in visual ability in functional domains were reading (44% [95% CI, 42%-48%]), visual motor function (38% [95% CI, 36%-42%]), visual information processing (33% [95% CI, 31%-37%]), and mobility (27% [95% CI, 25%-31%]). The largest average effect size (Cohen d = 0.87) for the population was observed in overall visual ability. Age (P = .006) was an independent predictor of changes in overall visual ability, and logMAR visual acuity (P = .002) was predictive of changes in visual information processing. CONCLUSIONS AND RELEVANCE: Forty-four to fifty percent of patients presenting for outpatient LVR show clinically meaningful differences in overall visual ability after LVR, and the average effect sizes in overall visual ability are large, close to 1 SD.