Mobility Enhancement & Vision Rehabilitation

Wang S, Woods RL, Costela FM, Luo G. Dynamic gaze-position prediction of saccadic eye movements using a Taylor series. J Vis 2017;17(14):3.Abstract
Gaze-contingent displays have been widely used in vision research and virtual reality applications. Due to data transmission, image processing, and display preparation, the time delay between the eye tracker and the monitor update may lead to a misalignment between the eye position and the image manipulation during eye movements. We propose a method to reduce the misalignment using a Taylor series to predict the saccadic eye movement. The proposed method was evaluated using two large datasets including 219,335 human saccades (collected with an EyeLink 1000 system, 95% range from 1° to 32°) and 21,844 monkey saccades (collected with a scleral search coil, 95% range from 1° to 9°). When assuming a 10-ms time delay, the prediction of saccade movements using the proposed method could reduce the misalignment greater than the state-of-the-art methods. The average error was about 0.93° for human saccades and 0.26° for monkey saccades. Our results suggest that this proposed saccade prediction method will create more accurate gaze-contingent displays.
Wiecek E, Lashkari K, Dakin SC, Bex P. Metamorphopsia and interocular suppression in monocular and binocular maculopathy. Acta Ophthalmol 2015;93(4):e318-20.
Wiecek E, Dakin SC, Bex P. Metamorphopsia and letter recognition. J Vis 2014;14(14)Abstract

Acuity is the most commonly used measure of visual function, and reductions in acuity are associated with most eye diseases. Metamorphopsia-a perceived distortion of visual space-is another common symptom of visual impairment and is currently assessed qualitatively using Amsler (1953) charts. In order to quantify the impact of metamorphopsia on acuity, we measured the effect of physical spatial distortion on letter recognition. Following earlier work showing that letter recognition is tuned to specific spatial frequency (SF) channels, we hypothesized that the effect of distortion might depend on the spatial scale of visual distortion just as it depends on the spatial scale of masking noise. Six normally sighted observers completed a 26 alternate forced choice (AFC) Sloan letter identification task at five different viewing distances, and the letters underwent different levels of spatial distortion. Distortion was controlled using spatially band-pass filtered noise that spatially remapped pixel locations. Noise was varied over five spatial frequencies and five magnitudes. Performance was modeled with logistic regression and worsened linearly with increasing distortion magnitude and decreasing letter size. We found that retinal SF affects distortion at midrange frequencies and can be explained with the tuning of a basic contrast sensitivity function, while object-centered distortion SF follows a similar pattern of letter object recognition sensitivity and is tuned to approximately three cycles per letter (CPL). The interaction between letter size and distortion makes acuity an unreliable outcome for metamorphopsia assessment.

Wiecek E, Lashkari K, Dakin SC, Bex P. A statistical analysis of metamorphopsia in 7106 amsler grids. Ophthalmology 2015;122(2):431-3.
Wiegand I, Wolfe JM. Age doesn't matter much: hybrid visual and memory search is preserved in older adults. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn 2020;27(2):220-253.Abstract
We tested younger and older observers' attention and long-term memory functions in a "hybrid search" task, in which observers look through visual displays for instances of any of several types of targets held in memory. Apart from a general slowing, search efficiency did not change with age. In both age groups, reaction times increased linearly with the visual set size and logarithmically with the memory set size, with similar relative costs of increasing load (Experiment 1). We replicated the finding and further showed that performance remained comparable between age groups when familiarity cues were made irrelevant (Experiment 2) and target-context associations were to be retrieved (Experiment 3). Our findings are at variance with theories of cognitive aging that propose age-specific deficits in attention and memory. As hybrid search resembles many real-world searches, our results might be relevant to improve the ecological validity of assessing age-related cognitive decline.
Wiegand I, Westenberg E, Wolfe JM. Order, please! Explicit sequence learning in hybrid search in younger and older age. Mem Cognit 2021;Abstract
Sequence learning effects in simple perceptual and motor tasks are largely unaffected by normal aging. However, less is known about sequence learning in more complex cognitive tasks that involve attention and memory processes and how this changes with age. In this study, we examined whether incidental and intentional sequence learning would facilitate hybrid visual and memory search in younger and older adults. Observers performed a hybrid search task, in which they memorized four or 16 target objects and searched for any of those target objects in displays with four or 16 objects. The memorized targets appeared either in a repeating sequential order or in random order. In the first experiment, observers were not told about the sequence before the experiment. Only a subset of younger adults and none of the older adults incidentally learned the sequence. The "learners" acquired explicit knowledge about the sequence and searched faster in the sequence compared to random condition. In the second experiment, observers were told about the sequence before the search task. Both younger and older adults searched faster in sequence blocks than random blocks. Older adults, however, showed this sequence-learning effect only in blocks with smaller target sets. Our findings indicate that explicit sequence knowledge can facilitate hybrid search, as it allows observers to predict the next target and restrict their visual and memory search. In older age, the sequence-learning effect is constrained by load, presumably due to age-related decline in executive functions.
Wolfe JM. Guided Search 6.0: An updated model of visual search. Psychon Bull Rev 2021;Abstract
This paper describes Guided Search 6.0 (GS6), a revised model of visual search. When we encounter a scene, we can see something everywhere. However, we cannot recognize more than a few items at a time. Attention is used to select items so that their features can be "bound" into recognizable objects. Attention is "guided" so that items can be processed in an intelligent order. In GS6, this guidance comes from five sources of preattentive information: (1) top-down and (2) bottom-up feature guidance, (3) prior history (e.g., priming), (4) reward, and (5) scene syntax and semantics. These sources are combined into a spatial "priority map," a dynamic attentional landscape that evolves over the course of search. Selective attention is guided to the most active location in the priority map approximately 20 times per second. Guidance will not be uniform across the visual field. It will favor items near the point of fixation. Three types of functional visual field (FVFs) describe the nature of these foveal biases. There is a resolution FVF, an FVF governing exploratory eye movements, and an FVF governing covert deployments of attention. To be identified as targets or rejected as distractors, items must be compared to target templates held in memory. The binding and recognition of an attended object is modeled as a diffusion process taking > 150 ms/item. Since selection occurs more frequently than that, it follows that multiple items are undergoing recognition at the same time, though asynchronously, making GS6 a hybrid of serial and parallel processes. In GS6, if a target is not found, search terminates when an accumulating quitting signal reaches a threshold. Setting of that threshold is adaptive, allowing feedback about performance to shape subsequent searches. Simulation shows that the combination of asynchronous diffusion and a quitting signal can produce the basic patterns of response time and error data from a range of search experiments.
Wolfe JM, Evans KK, Drew T, Aizenman A, Josephs E. HOW DO RADIOLOGISTS USE THE HUMAN SEARCH ENGINE?. Radiat Prot Dosimetry 2016;169(1-4):24-31.Abstract

Radiologists perform many 'visual search tasks' in which they look for one or more instances of one or more types of target item in a medical image (e.g. cancer screening). To understand and improve how radiologists do such tasks, it must be understood how the human 'search engine' works. This article briefly reviews some of the relevant work into this aspect of medical image perception. Questions include how attention and the eyes are guided in radiologic search? How is global (image-wide) information used in search? How might properties of human vision and human cognition lead to errors in radiologic search?

Wolfe JM, Boettcher SEP, Josephs EL, Cunningham CA, Drew T. You look familiar, but I don't care: Lure rejection in hybrid visual and memory search is not based on familiarity. J Exp Psychol Hum Percept Perform 2015;41(6):1576-87.Abstract

In "hybrid" search tasks, observers hold multiple possible targets in memory while searching for those targets among distractor items in visual displays. Wolfe (2012) found that, if the target set is held constant over a block of trials, reaction times (RTs) in such tasks were a linear function of the number of items in the visual display and a linear function of the log of the number of items held in memory. However, in such tasks, the targets can become far more familiar than the distractors. Does this "familiarity"- operationalized here as the frequency and recency with which an item has appeared-influence performance in hybrid tasks In Experiment 1, we compared searches where distractors appeared with the same frequency as the targets to searches where all distractors were novel. Distractor familiarity did not have any reliable effect on search. In Experiment 2, most distractors were novel but some critical distractors were as common as the targets while others were 4× more common. Familiar distractors did not produce false alarm errors, though they did slightly increase RTs. In Experiment 3, observers successfully searched for the new, unfamiliar item among distractors that, in many cases, had been seen only once before. We conclude that when the memory set is held constant for many trials, item familiarity alone does not cause observers to mistakenly confuse target with distractors. (PsycINFO Database Record

Wolfe JM, Cain MS, Aizenman AM. Guidance and selection history in hybrid foraging visual search. Atten Percept Psychophys 2019;81(3):637-653.Abstract
In Hybrid Foraging tasks, observers search for multiple instances of several types of target. Collecting all the dirty laundry and kitchenware out of a child's room would be a real-world example. How are such foraging episodes structured? A series of four experiments shows that selection of one item from the display makes it more likely that the next item will be of the same type. This pattern holds if the targets are defined by basic features like color and shape but not if they are defined by their identity (e.g., the letters p & d). Additionally, switching between target types during search is expensive in time, with longer response times between successive selections if the target type changes than if they are the same. Finally, the decision to leave a screen/patch for the next screen in these foraging tasks is imperfectly consistent with the predictions of optimal foraging theory. The results of these hybrid foraging studies cast new light on the ways in which prior selection history guides subsequent visual search in general.
Wolfe JM. Visual Search: How Do We Find What We Are Looking For?. Annu Rev Vis Sci 2020;6:539-562.Abstract
In visual search tasks, observers look for targets among distractors. In the lab, this often takes the form of multiple searches for a simple shape that may or may not be present among other items scattered at random on a computer screen (e.g., Find a red T among other letters that are either black or red.). In the real world, observers may search for multiple classes of target in complex scenes that occur only once (e.g., As I emerge from the subway, can I find lunch, my friend, and a street sign in the scene before me?). This article reviews work on how search is guided intelligently. I ask how serial and parallel processes collaborate in visual search, describe the distinction between search templates in working memory and target templates in long-term memory, and consider how searches are terminated.
Wolfe JM, Aizenman AM, Boettcher SEP, Cain MS. Hybrid foraging search: Searching for multiple instances of multiple types of target. Vision Res 2016;119:50-9.Abstract

This paper introduces the "hybrid foraging" paradigm. In typical visual search tasks, observers search for one instance of one target among distractors. In hybrid search, observers search through visual displays for one instance of any of several types of target held in memory. In foraging search, observers collect multiple instances of a single target type from visual displays. Combining these paradigms, in hybrid foraging tasks observers search visual displays for multiple instances of any of several types of target (as might be the case in searching the kitchen for dinner ingredients or an X-ray for different pathologies). In the present experiment, observers held 8-64 target objects in memory. They viewed displays of 60-105 randomly moving photographs of objects and used the computer mouse to collect multiple targets before choosing to move to the next display. Rather than selecting at random among available targets, observers tended to collect items in runs of one target type. Reaction time (RT) data indicate searching again for the same item is more efficient than searching for any other targets, held in memory. Observers were trying to maximize collection rate. As a result, and consistent with optimal foraging theory, they tended to leave 25-33% of targets uncollected when moving to the next screen/patch. The pattern of RTs shows that while observers were collecting a target item, they had already begun searching memory and the visual display for additional targets, making the hybrid foraging task a useful way to investigate the interaction of visual and memory search.

Wolfe JM. Major issues in the study of visual search: Part 2 of "40 Years of Feature Integration: Special Issue in Memory of Anne Treisman". Atten Percept Psychophys 2020;
Wolfe JM. Visual Attention: Size Matters. Curr Biol 2017;27(18):R1002-R1003.Abstract
When searching real-world scenes, human attention is guided by knowledge of the plausible size of target object (if an object is six feet tall, it isn't your cat). Computer algorithms typically do not do this, but perhaps they should.
Wolfe JM, Utochkin IS. What is a preattentive feature?. Curr Opin Psychol 2018;29:19-26.Abstract
The concept of a preattentive feature has been central to vision and attention research for about half a century. A preattentive feature is a feature that guides attention in visual search and that cannot be decomposed into simpler features. While that definition seems straightforward, there is no simple diagnostic test that infallibly identifies a preattentive feature. This paper briefly reviews the criteria that have been proposed and illustrates some of the difficulties of definition.