In Vivo and In Vitro Feasibility Studies of Intraocular Use of Polyethylene Glycol-Based Synthetic Sealant to Close Retinal Breaks in Porcine and Rabbit Eyes.

Date Published:

2015 Jul 1

Abstract:

PURPOSE: Absorbable polyethylene glycol-based synthetic sealant (PEG sealant) polymerizes under xenon illumination and forms a clear, flexible, and firmly adherent hydrogel. The intraocular biocompatibility of PEG sealant and efficacy for closing retinal breaks were evaluated. METHODS: In an in vitro study, retinal detachment with a tear was created in porcine eyecups after vitreous gel removal. Polyethylene glycol-based synthetic sealant was applied to cover the tear and polymerized with a 40-second application of xenon light. Retinal adhesion strength was tested by forcefully squirting balanced salt solution (BSS) onto the retinal tear. Polyethylene glycol-based synthetic sealant was soaked in the BSS, incubated at 37°C, and the pH measured periodically over 72 hours. In an in vivo study, PEG sealant was injected into the vitreous cavity of the left eyes of rabbits. Ophthalmologic examinations were performed and bilateral ERGs were recorded simultaneously before and 28 days after injection. The eyes were enucleated for histological evaluation. RESULTS: Adhesion of PEG sealant to the retina was good in BSS. A forceful squirt of BSS onto the retinal tear covered with PEG sealant did not detach the retina; the retinal tear without PEG sealant detached immediately. The pH of the BSS containing PEG sealant was between 7.2 and 8.2. No inflammatory reaction was observed in the eyes throughout 28 days of follow-up. The ERGs recorded before and after injection showed typical patterns. Histological examinations did not reveal any abnormality or inflammation. CONCLUSIONS: Polyethylene glycol-based synthetic sealant appeared to effectively seal retinal breaks and was not toxic to the eye.

See also: Retina, July 2015, All, 2015
Last updated on 11/20/2018