Gnanaguru G, Choi AR, Amarnani D, D'Amore PA. Oxidized Lipoprotein Uptake Through the CD36 Receptor Activates the NLRP3 Inflammasome in Human Retinal Pigment Epithelial Cells. Invest Ophthalmol Vis Sci 2016;57(11):4704-12.Abstract

PURPOSE: Accumulation of oxidized phospholipids/lipoproteins with age is suggested to contribute to the pathogenesis of AMD. We investigated the effect of oxidized LDL (ox-LDL) on human RPE cells. METHODS: Primary human fetal RPE (hf-RPE) and ARPE-19 cells were treated with different doses of LDL or ox-LDL. Assessment of cell death was measured by lactate dehydrogenase release into the conditioned media. Barrier function of RPE was assayed by measuring transepithelial resistance. Lysosomal accumulation of ox-LDL was determined by immunostaining. Expression of CD36 was determined by RT-PCR; protein blot and function was examined by receptor blocking. NLRP3 inflammasome activation was assessed by RT-PCR, protein blot, caspase-1 fluorescent probe assay, and inhibitor assays. RESULTS: Treatment with ox-LDL, but not LDL, for 48 hours caused significant increase in hf-RPE and ARPE-19 (P < 0.001) cell death. Oxidized LDL treatment of hf-RPE cells resulted in a significant decrease in transepithelial resistance (P < 0.001 at 24 hours and P < 0.01 at 48 hours) relative to LDL-treated and control cells. Internalized ox-LDL was targeted to RPE lysosomes. Uptake of ox-LDL but not LDL significantly increased CD36 protein and mRNA levels by more than 2-fold. Reverse transcription PCR, protein blot, and caspase-1 fluorescent probe assay revealed that ox-LDL treatment induced NLRP3 inflammasome when compared with LDL treatment and control. Inhibition of NLRP3 activation using 10 μM isoliquiritigenin significantly (P < 0.001) inhibited ox-LDL induced cytotoxicity. CONCLUSIONS: These data are consistent with the concept that ox-LDL play a role in the pathogenesis of AMD by NLRP3 inflammasome activation. Suppression of NLRP3 inflammasome activation could attenuate RPE degeneration and AMD progression.

Bravo-Osuna I, Vicario-de-la-Torre M, Andrés-Guerrero V, Sánchez-Nieves J, Guzmán-Navarro M, de la Mata FJ, Gómez R, de Las Heras B, Argüeso P, Ponchel G, Herrero-Vanrell R, Molina-Martínez IT. Novel Water-Soluble Mucoadhesive Carbosilane Dendrimers for Ocular Administration. Mol Pharm 2016;13(9):2966-76.Abstract

The purpose of this research was to determine the potential use of water-soluble anionic and cationic carbosilane dendrimers (generations 1-3) as mucoadhesive polymers in eyedrop formulations. Cationic carbosilane dendrimers decorated with ammonium -NH3(+) groups were prepared by hydrosylilation of Boc-protected allylamine and followed by deprotection with HCl. Anionic carbosilane dendrimers with terminal carboxylate groups were also employed in this study. In vitro and in vivo tolerance studies were performed in human ocular epithelial cell lines and rabbit eyes respectively. The interaction of dendrimers with transmembrane ocular mucins was evaluated with a surface biosensor. As proof of concept, the hypotensive effect of a carbosilane dendrimer eyedrop formulation containing acetazolamide (ACZ), a poorly water-soluble drug with limited ocular penetration, was tested after instillation in normotensive rabbits. The methodology used to synthesize cationic dendrimers avoids the difficulty of obtaining neutral -NH2 dendrimers that require harsher reaction conditions and also present high aggregation tendency. Tolerance studies demonstrated that both prototypes of water-soluble anionic and cationic carbosilane dendrimers were well tolerated in a range of concentrations between 5 and 10 μM. Permanent interactions between cationic carbosilane dendrimers and ocular mucins were observed using biosensor assays, predominantly for the generation-three (G3) dendrimer. An eyedrop formulation containing G3 cationic carbosilane dendrimers (5 μM) and ACZ (0.07%) (289.4 mOsm; 5.6 pH; 41.7 mN/m) induced a rapid (onset time 1 h) and extended (up to 7 h) hypotensive effect, and led to a significant increment in the efficacy determined by AUC0(8h) and maximal intraocular pressure reduction. This work takes advantage of the high-affinity interaction between cationic carbosilane dendrimers and ocular transmembrane mucins, as well as the tensioactive behavior observed for these polymers. Our results indicate that low amounts of cationic carbosilane dendrimers are well tolerated and able to improve the hypotensive effect of an acetazolamide solution. Our results suggest that carbosilane dendrimers can be used in a safe range of concentrations to enhance the bioavailability of drugs topically administered in the eye.

Weinreb RN, Leung CKS, Crowston JG, Medeiros FA, Friedman DS, Wiggs JL, Martin KR. Primary open-angle glaucoma. Nat Rev Dis Primers 2016;2:16067.Abstract

Glaucoma is an optic neuropathy that is characterized by the progressive degeneration of the optic nerve, leading to visual impairment. Glaucoma is the main cause of irreversible blindness worldwide, but typically remains asymptomatic until very severe. Open-angle glaucoma comprises the majority of cases in the United States and western Europe, of which, primary open-angle glaucoma (POAG) is the most common type. By contrast, in China and other Asian countries, angle-closure glaucoma is highly prevalent. These two types of glaucoma are characterized based on the anatomic configuration of the aqueous humour outflow pathway. The pathophysiology of POAG is not well understood, but it is an optic neuropathy that is thought to be associated with intraocular pressure (IOP)-related damage to the optic nerve head and resultant loss of retinal ganglion cells (RGCs). POAG is generally diagnosed during routine eye examination, which includes fundoscopic evaluation and visual field assessment (using perimetry). An increase in IOP, measured by tonometry, is not essential for diagnosis. Management of POAG includes topical drug therapies and surgery to reduce IOP, although new therapies targeting neuroprotection of RGCs and axonal regeneration are under development.

Shi Y, Wang H, Yin J, Li M, Zhang X, Xin C, Chen X, Wang N. Microcatheter-assisted trabeculotomy versus rigid probe trabeculotomy in childhood glaucoma. Br J Ophthalmol 2016;100(9):1257-62.Abstract

PURPOSE: To compare microcatheter-assisted trabeculotomy with standard rigid probe trabeculotomy for the treatment of childhood glaucoma. METHODS: The early postoperative (12 months) results of microcatheter-assisted trabeculotomy (group 1) performed by single surgeon were retrospectively compared with those of rigid probe trabeculotomy (group 2) performed by the same surgeon in patients treated for childhood glaucoma. Success was defined as an intraocular pressure (IOP) <21 mm Hg with at least a 30% reduction from preoperative IOP with (qualified success) or without (complete success) the use of anti-glaucoma medication. RESULTS: A total of 43 eyes of 36 patients were included. Mean IOP in group 1 was significantly lower than that in group 2 at 6 months (17.0±5.1 vs 22.5±9.8; p=0.042), 9 months (16.3±5.0 vs 21.6±9.6; p=0.009) and 12 months (14.8±2.5 vs 19.0±7.1; p=0.049) postoperatively. The mean percentage reduction in IOP from preoperative to the last postoperative follow-up was greater in group 1 (47.3±17.7%) than in group 2 (34.2±21.9%) (p=0.036). group 1 demonstrated an 81.0% complete and 86.4% qualified success rate, exceeding the 51.6% complete (p=0.060) and 61.9% qualified (p=0.037) success rate of group 2. There were no long-term complications in either group, but choroidal detachment occurred in one eye in group 2. CONCLUSION: Microcatheter-assisted circumferential trabeculotomy is a more effective treatment and is as safe as traditional trabeculotomy with a rigid probe for primary congenital glaucoma in the early postoperative course. TRIAL REGISTRATION NUMBER: ChiCTR-OCC-15005789, Results.

Liu C-H, Wang Z, Sun Y, SanGiovanni JP, Chen J. Retinal expression of small non-coding RNAs in a murine model of proliferative retinopathy. Sci Rep 2016;6:33947.Abstract

Ocular neovascularization is a leading cause of blindness in proliferative retinopathy. Small non-coding RNAs (sncRNAs) play critical roles in both vascular and neuronal development of the retina through post-transcriptional regulation of target gene expression. To identify the function and therapeutic potential of sncRNAs in retinopathy, we assessed the expression profile of retinal sncRNAs in a mouse model of oxygen-induced retinopathy (OIR) with pathologic proliferation of neovessels. Approximately 2% of all analyzed sncRNAs were significantly altered in OIR retinas compared with normoxic controls. Twenty three microRNAs with substantial up- or down-regulation were identified, including miR-351, -762, -210, 145, -155, -129-5p, -150, -203, and -375, which were further analyzed for their potential target genes in angiogenic, hypoxic, and immune response-related pathways. In addition, nineteen small nucleolar RNAs also revealed differential expression in OIR retinas compared with control retinas. A decrease of overall microRNA expression in OIR retinas was consistent with reduced microRNA processing enzyme Dicer, and increased expression of Alu element in OIR. Together, our findings elucidated a group of differentially expressed sncRNAs in a murine model of proliferative retinopathy. These sncRNAs may exert critical post-transcriptional regulatory roles in regulating pathological neovascularization in eye diseases.

Hattori T, Takahashi H, Dana R. Novel Insights Into the Immunoregulatory Function and Localization of Dendritic Cells. Cornea 2016;35 Suppl 1:S49-S54.Abstract

Dendritic cells (DCs) are antigen-presenting cells that normally play a critical role in stimulating T-cell-dependent immune responses. However, tolerogenic DCs (CD11cMHC-IICD80CD86) induce immune tolerance by stimulating regulatory T cells (Tregs: CD4CD25Foxp3). Although tolerogenic DCs are used to treat autoimmune diseases and to prevent transplantation rejection, the mechanisms by which they regulate alloimmunity are poorly understood. Here, we review our previous studies aiming to elucidate the mechanisms involved in immune rejection of corneal allografts using a corneal transplant model. We found that donor-derived tolerogenic DCs significantly prolonged corneal allograft survival by suppressing indirect allosensitization. We also reported the precise distribution of intraepithelial corneal DCs, termed Langerhans cells (LCs: CD11cLangerinMHC-II) in the cornea, which we maintain play a critical role in regulating corneal immunity. By confocal microscopy, we constructed 3-dimensional images of corneal LCs, which demonstrated that their cell bodies are present in the basal cell layer of the corneal epithelium. Furthermore, LC dendrites extend toward the ocular surface, but do not connect to epithelial tight junctions, indicating that they cannot directly interact with ocular surface antigens. We confirm the potential of DC therapy for corneal graft rejection and report the function of intraepithelial DCs (LCs) in the normal cornea.

Dagi Glass LR, Elliott AT. Large upper eyelid coloboma repair: a one-stage, one-site technique. J AAPOS 2016;Abstract

Current techniques for repairing large eyelid colobomas require preparation of other tissue sites and occasionally more than one procedure. We present a technique that requires only one procedure and is limited to the colobomatous eyelid; in addition, it is specifically designed to help avoid postoperative astigmatic and obstructive amblyopia. Outcomes are demonstrated in 3 cases of hemifacial microsomia. Large colobomas on the upper eyelid can be successfully and aesthetically repaired with only one procedure, incising only the congenitally abnormal eyelid.

Baniasadi N, Paschalis EI, Haghzadeh M, Ojha P, Elze T, Mahd M, Chen TC. Patterns of Retinal Nerve Fiber Layer Loss in Different Subtypes of Open Angle Glaucoma Using Spectral Domain Optical Coherence Tomography. J Glaucoma 2016;25(10):865-872.Abstract

PURPOSE OF THE STUDY: The purpose of the study was to determine whether there are different patterns of retinal nerve fiber layer (RNFL) thinning as measured by spectral domain optical coherence tomography (SD-OCT) for 4 subtypes of open angle glaucoma (OAG): primary OAG (POAG), normal tension glaucoma (NTG), pseudoexfoliation glaucoma (PXG), and pigmentary glaucoma (PDG) and to compare them with normal controls. MATERIALS AND METHODS: SD-OCT RNFL thickness values were measured for 4 quadrants and for 4 sectors (ie, superior-nasal, superior-temporal, inferior-nasal, and inferior-temporal). Differences in RNFL thickness values between groups were analyzed using analysis of variance. Paired t tests were used for quadrant comparisons. RESULTS: Two hundred eighty-five participants (102 POAG patients, 33 with NTG, 48 with PXG, 13 with PDG, and 89 normal patients) were included in this study. All 4 subtypes of OAG showed significant RNFL thinning in the superior, inferior, and nasal quadrants as well as the superior-temporal and inferior-temporal sectors (all P-values <0.0001) compared with normals. POAG and NTG patients had greater RNFL thinning inferiorly and inferior-temporally than superiorly (P-values: 0.002 to 0.018 and 0.006, respectively) compared with PXG patients. In contrast, PDG patients had greater RNFL thinning superiorly and superior-nasally than inferiorly compared with other OAG subtypes (ie, POAG, NTG, PXG groups, with P-values: 0.009, 0.003, 0.009, respectively). Of the 4 OAG subtypes, PXG patients exhibited the greatest degree of inter-eye RNFL asymmetry. CONCLUSIONS: This study suggests that SD-OCT may be able to detect significant differences in patterns of RNFL thinning for different subtypes of OAG.

Zareian R, Susilo ME, Paten JA, McLean JP, Hollmann J, Karamichos D, Messer CS, Tambe DT, Saeidi N, Zieske JD, Ruberti JW. Human Corneal Fibroblast Pattern Evolution and Matrix Synthesis on Mechanically Biased Substrates. Tissue Eng Part A 2016;22(19-20):1204-1217.Abstract

In a fibroblast colony model of corneal stromal development, we asked how physiological tension influences the patterning dynamics of fibroblasts and the orientation of deposited extracellular matrix (ECM). Using long-term live-cell microscopy, enabled by an optically accessible mechanobioreactor, a primary human corneal fibroblast colony was cultured on three types of substrates: a mechanically biased, loaded, dense, disorganized collagen substrate (LDDCS), a glass coverslip, and an unloaded, dense, disorganized collagen substrate (UDDCS). On LDDCS, fibroblast orientation and migration along a preferred angle developed early, cell orientation was correlated over long distances, and the colony pattern was stable. On glass, fibroblast orientation was poorly correlated, developed more slowly, and colony patterns were metastable. On UDDCS, cell orientation was correlated over shorter distances compared with LDDCS specimens. On all substrates, the ECM pattern reflected the cell pattern. In summary, mechanically biasing the collagen substrate altered the early migration behavior of individual cells, leading to stable emergent cell patterning, which set the template for newly synthesized ECM.

Moran EP, Wang Z, Chen J, Sapieha P, Smith LEH, Ma J-X. Neurovascular cross talk in diabetic retinopathy: Pathophysiological roles and therapeutic implications. Am J Physiol Heart Circ Physiol 2016;311(3):H738-49.Abstract

Diabetic retinopathy (DR) is the leading cause of blindness in the working-age population in developed countries, and its prevalence will increase as the global incidence of diabetes grows exponentially. DR begins with an early nonproliferative stage in which retinal blood vessels and neurons degenerate as a consequence of chronic hyperglycemia, resulting in vasoregression and persistent retinal ischemia, metabolic disequilibrium, and inflammation. This is conducive to overcompensatory pathological neovascularization associated with advanced proliferative DR. Although DR is considered a microvascular complication, the retinal microvasculature is intimately associated with and governed by neurons and glia; neurodegeneration, neuroinflammation, and dysregulation of neurovascular cross talk are responsible in part for vascular abnormalities in both early nonproliferative DR and advanced proliferative DR. Neuronal activity directly regulates microvascular dilation and blood flow in the process of neurovascular coupling. Retinal neurons also secrete guidance cues in response to injury, ischemia, or metabolic stress that may either promote or suppress vascular outgrowth, either alleviating or exacerbating DR, contingent on the stage of disease and retinal microenvironment. Neurodegeneration, impaired neurovascular coupling, and dysregulation of neuronal guidance cues are key events in the pathogenesis of DR, and correcting these events may prevent or delay development of advanced DR. The review discusses the mechanisms of neurovascular cross talk and its dysregulation in DR, and their potential therapeutic implications.

Gipson IK. Goblet cells of the conjunctiva: A review of recent findings. Prog Retin Eye Res 2016;54:49-63.Abstract

Goblet cells within the conjunctival epithelium are specialized cells that secrete mucins onto the surface of the eye. Recent research has demonstrated new characteristics of the cells, including factors influencing their differentiation, their gene products and their functions at the ocular surface. The following review summarizes the newly discovered aspects of the role of Spdef, a member of the Ets transcription factor family in conjunctival goblet cell differentiation, the newly discovered goblet cell products including claudin2, the Wnt inhibitor Frzb, and the transmembrane mucin Muc16. The current concepts of conjunctival goblet cell function, including debris removal and immune surveillance are reviewed, as are changes in the goblet cell population in ocular surface diseases. Major remaining questions regarding conjunctival cell biology are discussed.

de Mello SS, Van Tyne D, Dabul ANG, Gilmore MS, Camargo ILBC. High-Quality Draft Genome Sequence of the Multidrug-Resistant Clinical Isolate Enterococcus faecium VRE16. Genome Announc 2016;4(5)Abstract

Specific lineages of the commensal bacterium Enterococcus faecium belonging to CC17, especially ST412, have been isolated from patients in several hospitals worldwide and harbor antibiotic resistance genes and virulence factors. Here, we report a high-quality draft genome sequence and highlight features of E. faecium VRE16, a representative of this ST.

Bowers AR, Sheldon SS, DeCarlo DK, Peli E. Bioptic Telescope Use and Driving Patterns of Drivers with Age-Related Macular Degeneration. Transl Vis Sci Technol 2016;5(5):5.Abstract

PURPOSE: To investigate the telescope use and driving patterns of bioptic drivers with age-related macular degeneration (AMD). METHODS: A questionnaire addressing telescope use and driving patterns was administered by telephone interview to three groups of bioptic drivers: AMD (n = 31; median 76 years); non-AMD first licensed with a bioptic (n = 38; 53 years); and non-AMD first licensed without a bioptic (n = 47; 37 years). Driving patterns of bioptic AMD drivers were also compared with those of normal vision (NV) drivers (n = 36; 74 years) and nonbioptic AMD drivers (n = 34; 79 years). RESULTS: Bioptic usage patterns of AMD drivers did not differ from those of the younger bioptic drivers and greater visual difficulty without the bioptic was strongly correlated with greater bioptic helpfulness. Bioptic AMD drivers were more likely to report avoidance of night driving than the age-similar NV drivers (P = 0.06). However, they reported less difficulty than the nonbioptic AMD drivers in all driving situations (P ≤ 0.02). Weekly mileages of bioptic AMD drivers were lower than those of the younger bioptic drivers (P < 0.001), but not the NV group (P = 0.54), and were higher than those of the nonbioptic AMD group (P < 0.001). CONCLUSIONS: Our results suggest that bioptic telescopes met the visual demands of drivers with AMD and that those drivers had relatively unrestricted driving habits. TRANSLATIONAL RELEVANCE: Licensure with a bioptic telescope may prolong driving of older adults with AMD; however, objective measures of bioptic use, driving performance, and safety are needed.

Verma SS, Cooke Bailey JN, Lucas A, Bradford Y, Linneman JG, Hauser MA, Pasquale LR, Peissig PL, Brilliant MH, McCarty CA, Haines JL, Wiggs JL, Vrabec TR, Tromp G, Ritchie MD, Ritchie MD, Ritchie MD. Epistatic Gene-Based Interaction Analyses for Glaucoma in eMERGE and NEIGHBOR Consortium. PLoS Genet 2016;12(9):e1006186.Abstract

Primary open angle glaucoma (POAG) is a complex disease and is one of the major leading causes of blindness worldwide. Genome-wide association studies have successfully identified several common variants associated with glaucoma; however, most of these variants only explain a small proportion of the genetic risk. Apart from the standard approach to identify main effects of variants across the genome, it is believed that gene-gene interactions can help elucidate part of the missing heritability by allowing for the test of interactions between genetic variants to mimic the complex nature of biology. To explain the etiology of glaucoma, we first performed a genome-wide association study (GWAS) on glaucoma case-control samples obtained from electronic medical records (EMR) to establish the utility of EMR data in detecting non-spurious and relevant associations; this analysis was aimed at confirming already known associations with glaucoma and validating the EMR derived glaucoma phenotype. Our findings from GWAS suggest consistent evidence of several known associations in POAG. We then performed an interaction analysis for variants found to be marginally associated with glaucoma (SNPs with main effect p-value <0.01) and observed interesting findings in the electronic MEdical Records and GEnomics Network (eMERGE) network dataset. Genes from the top epistatic interactions from eMERGE data (Likelihood Ratio Test i.e. LRT p-value <1e-05) were then tested for replication in the NEIGHBOR consortium dataset. To replicate our findings, we performed a gene-based SNP-SNP interaction analysis in NEIGHBOR and observed significant gene-gene interactions (p-value <0.001) among the top 17 gene-gene models identified in the discovery phase. Variants from gene-gene interaction analysis that we found to be associated with POAG explain 3.5% of additional genetic variance in eMERGE dataset above what is explained by the SNPs in genes that are replicated from previous GWAS studies (which was only 2.1% variance explained in eMERGE dataset); in the NEIGHBOR dataset, adding replicated SNPs from gene-gene interaction analysis explain 3.4% of total variance whereas GWAS SNPs alone explain only 2.8% of variance. Exploring gene-gene interactions may provide additional insights into many complex traits when explored in properly designed and powered association studies.

Sehic A, Guo S, Cho K-S, Corraya RM, Chen DF, Utheim TP. Electrical Stimulation as a Means for Improving Vision. Am J Pathol 2016;186(11):2783-2797.Abstract

Evolving research has provided evidence that noninvasive electrical stimulation (ES) of the eye may be a promising therapy for either preserving or restoring vision in several retinal and optic nerve diseases. In this review, we focus on minimally invasive strategies for the delivery of ES and accordingly summarize the current literature on transcorneal, transorbital, and transpalpebral ES in both animal experiments and clinical studies. Various mechanisms are believed to underlie the effects of ES, including increased production of neurotrophic agents, improved chorioretinal blood circulation, and inhibition of proinflammatory cytokines. Different animal models have demonstrated favorable effects of ES on both the retina and the optic nerve. Promising effects of ES have also been demonstrated in clinical studies; however, all current studies have a lack of randomization and/or a control group (sham). There is thus a pressing need for a deeper understanding of the underlying mechanisms that govern clinical success and optimization of stimulation parameters in animal studies. In addition, such research should be followed by large, prospective, clinical studies to explore the full potential of ES. Through this review, we aim to provide insight to guide future research on ES as a potential therapy for improving vision.