All

Yahalom C, Woods RL, Akula JD, Tan W-H, Fulton A. Microcephaly and chorioretinopathy associated with TUBGCP4: a case report and a review of the literature. Ophthalmic Genet 2023;44(6):585-590.Abstract
BACKGROUND: Microcephaly and chorioretinopathy (MCCRP) is a rare autosomal recessive (AR) disorder characterized by microcephaly, developmental delay, chorioretinopathy, and visual impairment. We characterized the long-term phenotype of an additional patient with MCCRP associated with TUBCGP4 pathogenic variants and analysed previously reported cases in the literature. MATERIALS AND METHODS: Analysis of clinical and genetic data of a patient with TUBGCP4-related MCCRP followed for more than 19 years and literature search for previously reported patients with TUBCGP4 variants using PubMed, Scopus, and Google Scholar. RESULTS: Molecular diagnosis using exome sequencing demonstrated two TUBCGP4 variants in trans: c.1669C>T (p.Arg557*) and c.1746 G>T (p.Leu582=). Clinical characteristics included microcephaly, microphthalmia, punched-out chorioretinal lesions, vision impairment, nystagmus, Tetralogy of Fallot and neurodevelopmental delay. Another six previously reported cases of TUBCGP4-related MCCRP were identified. Their clinical and genetic characteristics are compared. CONCLUSIONS: TUBCGP4-related microcephaly and chorioretinopathy, is a rare autosomal recessive neuro-ophthalmic disorder. Clinical characteristics in our proband have remained stable for two decades. The pathophysiology of this syndrome is not yet fully understood.
Lim HW, Pershing S, Moshfeghi DM, Heo H, Haque ME, Lambert SR, Lambert SR. Causes of Childhood Blindness in the United States using the IRIS® Registry (Intelligent Research in Sight). Ophthalmology 2023;Abstract
PURPOSE: To investigate causes of childhood blindness in the United States using the IRIS® Registry (Intelligent Research in Sight). DESIGN: Cross-Sectional Study. PARTICIPANTS: Patients ≤18 years of age with visual acuity 20/200 or worse in their better seeing eye in the IRIS Registry during 2018. METHODS: Causes of blindness were classified by anatomical site and specific diagnoses. MAIN OUTCOME MEASURES: Percentages of causes of blindness. RESULTS: Of 81,164 children with 2018 visual acuity data in the IRIS Registry, 961 (1.18%) had visual acuity 20/200 or worse in their better-seeing eye. Leading causes of blindness were retinopathy of prematurity (ROP) in 301 (31.3%), nystagmus in 78 (8.1%), and cataract in 64 (6.7%) patients. The retina was the leading anatomic site (47.7%) followed by optic nerve (11.6%) and lens (10.0%). A total of 52.4% of patients had treatable causes of blindness. CONCLUSIONS: This analysis offers a unique cross-sectional view of childhood blindness in the US using a clinical data registry. More than one-half of blind patients had a treatable cause of blindness.
Goenka A, Khan F, Verma B, Sinha P, Dmello CC, Jogalekar MP, Gangadaran P, Ahn B-C. Tumor microenvironment signaling and therapeutics in cancer progression. Cancer Commun (Lond) 2023;43(5):525-561.Abstract
Tumor development and metastasis are facilitated by the complex interactions between cancer cells and their microenvironment, which comprises stromal cells and extracellular matrix (ECM) components, among other factors. Stromal cells can adopt new phenotypes to promote tumor cell invasion. A deep understanding of the signaling pathways involved in cell-to-cell and cell-to-ECM interactions is needed to design effective intervention strategies that might interrupt these interactions. In this review, we describe the tumor microenvironment (TME) components and associated therapeutics. We discuss the clinical advances in the prevalent and newly discovered signaling pathways in the TME, the immune checkpoints and immunosuppressive chemokines, and currently used inhibitors targeting these pathways. These include both intrinsic and non-autonomous tumor cell signaling pathways in the TME: protein kinase C (PKC) signaling, Notch, and transforming growth factor (TGF-β) signaling, Endoplasmic Reticulum (ER) stress response, lactate signaling, Metabolic reprogramming, cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) and Siglec signaling pathways. We also discuss the recent advances in Programmed Cell Death Protein 1 (PD-1), Cytotoxic T-Lymphocyte Associated Protein 4 (CTLA4), T-cell immunoglobulin mucin-3 (TIM-3) and Lymphocyte Activating Gene 3 (LAG3) immune checkpoint inhibitors along with the C-C chemokine receptor 4 (CCR4)- C-C class chemokines 22 (CCL22)/ and 17 (CCL17), C-C chemokine receptor type 2 (CCR2)- chemokine (C-C motif) ligand 2 (CCL2), C-C chemokine receptor type 5 (CCR5)- chemokine (C-C motif) ligand 3 (CCL3) chemokine signaling axis in the TME. In addition, this review provides a holistic understanding of the TME as we discuss the three-dimensional and microfluidic models of the TME, which are believed to recapitulate the original characteristics of the patient tumor and hence may be used as a platform to study new mechanisms and screen for various anti-cancer therapies. We further discuss the systemic influences of gut microbiota in TME reprogramming and treatment response. Overall, this review provides a comprehensive analysis of the diverse and most critical signaling pathways in the TME, highlighting the associated newest and critical preclinical and clinical studies along with their underlying biology. We highlight the importance of the most recent technologies of microfluidics and lab-on-chip models for TME research and also present an overview of extrinsic factors, such as the inhabitant human microbiome, which have the potential to modulate TME biology and drug responses.
Sjöbom U, Andersson MX, Pivodic A, Lund A-M, Vanpee M, Hansen-Pupp I, Ley D, Wackernagel D, Sävman K, Smith LEH, Löfqvist C, Hellström A, Nilsson AK. Modification of serum fatty acids in preterm infants by parenteral lipids and enteral docosahexaenoic acid/arachidonic acid: A secondary analysis of the Mega Donna Mega trial. Clin Nutr 2023;42(6):962-971.Abstract
BACKGROUND & AIM: Preterm infants risk deficits of long-chain polyunsaturated fatty acids (LCPUFAs) that may contribute to morbidities and hamper neurodevelopment. We aimed to determine longitudinal serum fatty acid profiles in preterm infants and how the profiles are affected by enteral and parenteral lipid sources. METHODS: Cohort study analyzing fatty acid data from the Mega Donna Mega study, a randomized control trial with infants born <28 weeks of gestation (n = 204) receiving standard nutrition or daily enteral lipid supplementation with arachidonic acid (AA):docosahexaenoic acid (DHA) (100:50 mg/kg/day). Infants received an intravenous lipid emulsion containing olive oil:soybean oil (4:1). Infants were followed from birth to postmenstrual age 40 weeks. Levels of 31 different fatty acids from serum phospholipids were determined by GC-MS and reported in relative (mol%) and absolute concentration (μmol l-1) units. RESULTS: Higher parenteral lipid administration resulted in lower serum proportion of AA and DHA relative to other fatty acids during the first 13 weeks of life (p < 0.001 for the 25th vs the 75th percentile). The enteral AA:DHA supplement increased the target fatty acids with little impact on other fatty acids. The absolute concentration of total phospholipid fatty acids changed rapidly in the first weeks of life, peaking at day 3, median (Q1-Q3) 4452 (3645-5466) μmol l-1, and was positively correlated to the intake of parenteral lipids. Overall, infants displayed common fatty acid trajectories over the study period. However, remarkable differences in fatty acid patterns were observed depending on whether levels were expressed in relative or absolute units. For example, the relative levels of many LCPUFAs, including DHA and AA, declined rapidly after birth while their absolute concentrations increased in the first week of life. For DHA, absolute levels were significantly higher compared to cord blood from day 1 until postnatal week 16 (p < 0.001). For AA, absolute postnatal levels were lower compared to cord blood from week 4 throughout the study period (p < 0.05). CONCLUSIONS: Our data show that parenteral lipids aggravate the postnatal loss of LCPUFAs seen in preterm infants and that serum AA available for accretion is below that in utero. Further research is needed to establish optimal postnatal fatty acid supplementation and profiles in extremely preterm infants to promote development and long-term health. CLINICAL TRIAL REGISTRY: ClinicalTrials.gov, identifier: NCT03201588.
Salongcay RP, Jacoba CMP, Salva CMG, Rageh A, Aquino LAC, Saunar AV, Alog GP, Ashraf M, Peto T, Silva PS. One-field, two-field and five-field handheld retinal imaging compared with standard seven-field Early Treatment Diabetic Retinopathy Study photography for diabetic retinopathy screening. Br J Ophthalmol 2023;Abstract
BACKGROUND/AIMS: To determine agreement of one-field (1F, macula-centred), two-field (2F, disc-macula) and five-field (5F, macula, disc, superior, inferior and nasal) mydriatic handheld retinal imaging protocols for the assessment of diabetic retinopathy (DR) as compared with standard seven-field Early Treatment Diabetic Retinopathy Study (ETDRS) photography. METHODS: Prospective, comparative instrument validation study. Mydriatic retinal images were taken using three handheld retinal cameras: Aurora (AU; 50° field of view (FOV), 5F), Smartscope (SS; 40° FOV, 5F), and RetinaVue (RV; 60° FOV, 2F) followed by ETDRS photography. Images were evaluated at a centralised reading centre using the international DR classification. Each field protocol (1F, 2F and 5F) was graded independently by masked graders. Weighted kappa (Kw) statistics assessed agreement for DR. Sensitivity (SN) and specificity (SP) for referable diabetic retinopathy (refDR; moderate non-proliferative diabetic retinopathy (NPDR) or worse, or ungradable images) were calculated. RESULTS: Images from 225 eyes of 116 patients with diabetes were evaluated. Severity by ETDRS photography: no DR, 33.3%; mild NPDR, 20.4%; moderate, 14.2%; severe, 11.6%; proliferative, 20.4%. Ungradable rate for DR: ETDRS, 0%; AU: 1F 2.23%, 2F 1.79%, 5F 0%; SS: 1F 7.6%, 2F 4.0%, 5F 3.6%; RV: 1F 6.7%, 2F 5.8%. Agreement rates of DR grading between handheld retinal imaging and ETDRS photography were (Kw, SN/SP refDR) AU: 1F 0.54, 0.72/0.92; 2F 0.59, 0.74/0.92; 5F 0.75, 0.86/0.97; SS: 1F 0.51, 0.72/0.92; 2F 0.60, 0.75/0.92; 5F 0.73, 0.88/0.92; RV: 1F 0.77, 0.91/0.95; 2F 0.75, 0.87/0.95. CONCLUSION: When using handheld devices, the addition of peripheral fields decreased the ungradable rate and increased SN and SP for refDR. These data suggest the benefit of additional peripheral fields in DR screening programmes that use handheld retinal imaging.
Johnson TV, Calkins DJ, Fortune B, Goldberg JL, Torre AL, Lamba DA, Meyer JS, Reh TA, Wallace VA, Zack DJ, Baranov P. The importance of unambiguous cell origin determination in neuronal repopulation studies. iScience 2023;26(4):106361.Abstract
Neuronal repopulation achieved through transplantation or transdifferentiation from endogenous sources holds tremendous potential for restoring function in chronic neurodegenerative disease or acute injury. Key to the evaluation of neuronal engraftment is the definitive discrimination of new or donor neurons from preexisting cells within the host tissue. Recent work has identified mechanisms by which genetically encoded donor cell reporters can be transferred to host neurons through intercellular material transfer. In addition, labeling transplanted and endogenously transdifferentiated neurons through viral vector transduction can yield misexpression in host cells in some circumstances. These issues can confound the tracking and evaluation of repopulated neurons in regenerative experimental paradigms. Using the retina as an example, we discuss common reasons for artifactual labeling of endogenous host neurons with donor cell reporters and suggest strategies to prevent erroneous conclusions based on misidentification of cell origin.
Merabet LB, Manley CE, Pamir Z, Bauer CM, Skerswetat J, Bex PJ. Motion and form coherence processing in individuals with cerebral visual impairment. Dev Med Child Neurol 2023;65(10):1379-1386.Abstract
AIM: Using a visual psychophysical paradigm, we sought to assess motion and form coherence thresholds as indices of dorsal and ventral visual stream processing respectively, in individuals with cerebral visual impairment (CVI). We also explored potential associations between psychophysical assessments and brain lesion severity in CVI. METHOD: Twenty individuals previously diagnosed with CVI (mean age = 17 years 11 months [SD 5 years 10 months]; mean Verbal IQ = 86.42 [SD 35.85]) and 30 individuals with neurotypical development (mean age = 20 years 1 month [SD 3 years 8 months]; mean Verbal IQ = 110.05 [SD 19.34]) participated in the study. In this two-group comparison, cross-sectional study design, global motion, and form pattern coherence thresholds were assessed using a computerized, generalizable, self-administrable, and response-adaptive psychophysical paradigm called FInD (Foraging Interactive D-prime). RESULTS: Consistent with dorsal stream dysfunction, mean global motion (but not form) coherence thresholds were significantly higher in individuals with CVI compared to controls. No statistically significant association was found between coherence thresholds and lesion severity. INTERPRETATION: These results suggest that the objective assessment of motion and form coherence threshold sensitivities using this psychophysical paradigm may be useful in helping to characterize perceptual deficits and the complex clinical profile of CVI. WHAT THIS PAPER ADDS: In participants with cerebral visual impairment (CVI), motion (but not form) coherence thresholds were significantly higher compared to controls. These psychophysical results support the notion of dorsal stream dysfunction in CVI.
Yu C, Zou J, Ge Q-M, Liao X-L, Pan Y-C, Wu J-L, Su T, Zhang L-J, Liang R-B, Shao Y. Ocular microvascular alteration in Sjögren's syndrome treated with hydroxychloroquine: an OCTA clinical study. Ther Adv Chronic Dis 2023;14:20406223231164498.Abstract
BACKGROUND: Sjögren's syndrome (SjS) is a rare autoimmune disease, and despite our knowledge of SjS, we still lack effective treatments. Chloroquine drugs used to treat autoimmune diseases are still the primary medicine for SjS but increase the risk of chloroquine retinopathy. OBJECTIVES: The objective of this study is to use Optical Coherence Tomography Angiography (OCTA) images to monitor the microvascular changes in the fundus of SjS patients after hydroxychloroquine (HCQ) treatment and the feasibility of using them as diagnostic indicators. DESIGN: This is a retrospective observational cohort study. METHODS: Twelve healthy controls (HCs group; 24 eyes), 12 SjS patients (SjS group; 24 eyes), and 12 SjS patients treated with HCQ (HCQ group; 24 eyes) were recruited. Three-dimensional OCTA images of the retina were collected, and microvascular density was calculated for each eye. OCTA image segmentation for analysis was conducted using the central wheel division method (C1-C6), hemisphere segmentation method (SR, SL, IL, and IR), and the early treatment of diabetic retinopathy study method (ETDRS) (R, S, L, and I). RESULTS: Retinal microvascular density was significantly lower in the SjS patients compared to the HCs group (p < 0.05) and much lower in the HCQ group compared to the SjS patients (p < 0.05). The SjS and HCQ groups differed in the I, R, SR, IL, and IR regions in the superficial and deep retina and the S region in the superficial retina. The ROC curves of the relationship between the HCs and SjS groups and between the SjS and HCQ groups demonstrated good classification accuracy. CONCLUSION: HCQ may contribute significantly to the microvascular alteration in SjS. Microvascular alteration is a potential marker with adjunctive diagnostic value. The MIR and the OCTA images of I, IR, and C1 regions showed high accuracy in minoring the alteration.
Pakravan P, Patel V, Chau V, Rohowetz L, Lai J, Fan KC, Al-Khersan H, Melo IM, Muni RH, Tsao SW, Kaplan R, Jung JJ, Hoyek S, Patel NA, Kuriyan AE, Laura DM, Mantopoulos D, Syed ZA, Yannuzzi NA. Haptic Erosion Following Sutureless Scleral-fixated Intraocular Lens Placement. Ophthalmol Retina 2023;7(4):333-337.Abstract
PURPOSE: To describe the clinical features and visual outcomes of eyes with conjunctival haptic erosion after sutureless intrascleral (SIS) fixated intraocular lens (IOL) placement. DESIGN: Retrospective case series. SUBJECTS: Patients experiencing haptic erosion after SIS fixation between January 1, 2013, and March 1, 2022. METHODS: A multicenter, multisurgeon, retrospective review. MAIN OUTCOME MEASURES: Clinical features, visual outcomes, and treatment options following haptic erosions after SIS fixation. RESULTS: Nineteen eyes with haptic erosion were identified. The mean age at initial SIS fixation was 64 ± 12 years (range, 38-81 years). There were 5 (26%) eyes with a history of conjunctiva involving ocular surgery, including scleral buckle surgery and tube shunt surgery. Trocar-assisted fixation was performed in 15 (79%) eyes, whereas needle fixation was used in 4 (21%) eyes. Eighteen (95%) sets of haptics were flanged with a low temperature cautery. Seventeen (90%) sets of haptics were externalized superiorly and inferiorly, and 2 (10%) sets of haptics were externalized nasally and temporally. Haptics were covered by conjunctiva in 14 (74%) eyes and by scleral flap in 5 (26%) eyes. All patients experienced a single haptic erosion, of which 8 (43%) were located superiorly, 9 (47%) inferiorly, and 2 (10%) temporally. The mean interval between the initial SIS fixation and haptic erosion was 278 ± 437 days. After correction of the erosion, 18 (95%) eyes had a stable IOL at the last follow-up, with no recurrence of haptic erosion. In this series, there were no cases of endophthalmitis. CONCLUSIONS: Haptic erosion is a notable complication after SIS fixated IOL surgery but may be repaired with favorable visual outcomes. Careful evaluation of the conjunctiva should be considered before the surgery. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found after the references.
Ye JJ, Bouffard MA, Brooks E, Hung YP, Kimchi EY. Giant Cell Arteritis Presenting With Multiple Cranial Neuropathies - Case Report. Neurohospitalist 2023;13(2):188-191.Abstract
Background: Vision loss accounts for most ophthalmic presentations of giant cell arteritis (GCA), but an important minority of patients present with diplopia and other cranial neuropathies. Case study: Here we present the case of an 84-year-old woman with a prior history of multiple cancers who was admitted to our hospital after developing double vision. She was found to have mydriasis, ptosis, and ophthalmoplegia in the right eye (OD) consistent with a combined R CNIII/CNVI neuropathy, as well as highly elevated inflammatory markers. Given her cancer history, the patient was initially worked up for various neoplastic, paraneoplastic, inflammatory, and infectious causes of multiple cranial neuropathies; however, as these results were negative, GCA became a more likely contender as a possible rare cause of multiple cranial neuropathies. The patient underwent temporal artery biopsy which showed pathology consistent with giant cell arteritis, and she was treated with steroids with eventual improvement in ophthalmoplegia and ptosis. Conclusions: This case illustrates the importance of recognizing GCA as a rare possible cause of multiple cranial neuropathies, including the indispensable role of temporal artery biopsy.
Maidana DE, Gonzalez-Buendia L, Miller JW, Vavvas DG. RIPK necrotic cell death pathway in both donor photoreceptor and host immune cells synergize to affect photoreceptor graft survival. FASEB J 2023;37(4):e22847.Abstract
Photoreceptor transplant has been put forward as a repair strategy to tackle degenerated retinas. Nonetheless, cell death and immune rejection seriously limit the success of this strategy, with only a small fraction of transplanted cells surviving. Improving the survival of transplanted cells is of critical importance. Recent evidence has identified receptor-interacting protein kinase 3 (RIPK3) as a molecular trigger controlling necroptotic cell death and inflammation. However, its role in photoreceptor transplantation and regenerative medicine has not been studied. We hypothesized that modulation of RIPK3 to address both cell death and immunity could have advantageous effects on photoreceptor survival. In a model of inherited retinal degeneration, deletion of RIPK3 in donor photoreceptor precursors significantly increases the survival of transplanted cells. Simultaneous RIPK3 deletion in donor photoreceptors and recipients maximizes graft survival. Lastly, to discern the role of RIPK3 in the host immune response, bone marrow transplant experiments demonstrated that peripheral immune cell RIPK3 deficiency is protective for both donor and host photoreceptor survival. Interestingly, this finding is independent of photoreceptor transplantation, as the peripheral protective effect is also observed in an additional retinal detachment photoreceptor degeneration model. Altogether, these results indicate that immunomodulatory and neuroprotective strategies targeting the RIPK3 pathway can aid regenerative therapies of photoreceptor transplantation.
Feng Q, Wong KA, Benowitz LI. Full-length optic nerve regeneration in the absence of genetic manipulations. JCI Insight 2023;8(7)Abstract
The inability of mature retinal ganglion cells (RGCs) to regenerate axons after optic nerve injury can be partially reversed by manipulating cell-autonomous and/or -nonautonomous factors. Although manipulations of cell-nonautonomous factors could have higher translational potential than genetic manipulations of RGCs, they have generally produced lower levels of optic nerve regeneration. Here, we report that preconditioning resulting from mild lens injury (conditioning LI, cLI) before optic nerve damage induced far greater regeneration than LI after nerve injury or the pro-inflammatory agent zymosan given either before or after nerve damage. Unlike zymosan-induced regeneration, cLI was unaltered by depleting mature neutrophils or T cells or blocking receptors for known inflammation-derived growth factors (oncomodulin, stromal cell-derived factor 1, CCL5) and was only partly diminished by suppressing CCR2+ monocyte recruitment. Repeated episodes of LI led to full-length optic nerve regeneration, and pharmacological removal of local resident macrophages with the colony stimulating factor 1 receptor inhibitor PLX5622 enabled some axons to reinnervate the brain in just 6 weeks, comparable to the results obtained with the most effective genetic manipulations of RGCs. Thus, cell-nonautonomous interventions can induce high levels of optic nerve regeneration, paving the way to uncovering potent, translatable therapeutic targets for CNS repair.
Nakagawa H, Alemi H, Wang S, Kahale F, Blanco T, Liu C, Yin J, Dohlman TH, Dana R. Descemet Stripping Only Technique for Corneal Endothelial Damage in Mice. Cornea 2023;42(4):470-475.Abstract
PURPOSE: Descemet stripping only is an emerging surgical technique used to remove central Descemet membrane and corneal endothelial cells in patients with corneal endothelial disease. Here, we describe a murine model of this procedure to help facilitate basic science investigation and evaluation of postoperative outcomes using this surgical technique. METHODS: Slitlamp biomicroscopy, central corneal thickness assessment (by optical coherence tomography), and immunohistochemistry were used to assess the model through 7 weeks of follow-up. RESULTS: Complete removal of the endothelium and Descemet membrane was confirmed by slitlamp biomicroscopy and by histology. Central corneal thickness peaked at day 1 postinjury and then declined over the course of 2 weeks to a stable level of persistent edema. Seven weeks postinjury, immunohistochemical staining for ZO-1 showed the area of Descemet stripping was fully covered by enlarged and dysmorphic corneal endothelial cell. No significant ocular complications were appreciated through the end of the follow-up. CONCLUSIONS: We demonstrate the feasibility of and provide detailed instructions for a murine model of Descemet stripping only. This model provides a potential in vivo platform to investigate the mechanisms and biology of this emerging surgical procedure.
Douglas VP, Douglas KA, Torun N. Optical coherence tomography angiography in neuro-ophthalmology. Curr Opin Ophthalmol 2023;34(4):354-360.Abstract
PURPOSE OF REVIEW: Optical coherence tomography angiography (OCTA) is a novel, noninvasive imaging technique, which provides depth resolved visualization of microvasculature of the retina and choroid. Although OCTA has been widely used for the evaluation of a number of retinal diseases, its use in the field of neuro-ophthalmology has been less studied. In this review, we provide an update on the utility of OCTA in neuro-ophthalmic conditions. RECENT FINDINGS: Peripapillary and macular microvasculature analyses have indicated that OCTA can be a promising tool for early detection of a number of neuro-ophthalmic diseases, differential diagnosis, and monitoring of disease progression. Recent studies have demonstrated that structural and functional impairment can develop at early stages in some conditions such as in multiple sclerosis and Alzheimer's disease even in the absence of overt clinical symptoms. Furthermore, this dye-less technique can be a valuable adjunct tool in the detection of complications commonly seen in some congenital entities such optic disc drusen. SUMMARY: Since its introduction, OCTA has emerged as an important imaging approach shedding light on unrevealed pathophysiological mechanisms of several ocular diseases. The use of OCTA as a biomarker in the field of neuro-ophthalmology has recently gained considerable attention with studies supporting its role in clinical setting while larger studies are warranted for correlating these findings with traditional diagnostic procedures and clinical features and outcomes.
Chronopoulos P, Manicam C, Zadeh JK, Laspas P, Unkrig JC, Göbel ML, Musayeva A, Pfeiffer N, Oelze M, Daiber A, Li H, Xia N, Gericke A. Effects of Resveratrol on Vascular Function in Retinal Ischemia-Reperfusion Injury. Antioxidants (Basel) 2023;12(4)Abstract
Ischemia-reperfusion (I/R) events are involved in the development of various ocular pathologies, e.g., retinal artery or vein occlusion. We tested the hypothesis that resveratrol is protective against I/R injury in the murine retina. Intraocular pressure (IOP) was elevated in anaesthetized mice to 110 mm Hg for 45 min via a micropipette placed in the anterior chamber to induce ocular ischemia. In the fellow eye, which served as control, IOP was kept at a physiological level. One group received resveratrol (30 mg/kg/day p.o. once daily) starting one day before the I/R event, whereas the other group of mice received vehicle solution only. On day eight after the I/R event, mice were sacrificed and retinal wholemounts were prepared and immuno-stained using a Brn3a antibody to quantify retinal ganglion cells. Reactivity of retinal arterioles was measured in retinal vascular preparations using video microscopy. Reactive oxygen species (ROS) and nitrogen species (RNS) were quantified in ocular cryosections by dihydroethidium and anti-3-nitrotyrosine staining, respectively. Moreover, hypoxic, redox and nitric oxide synthase gene expression was quantified in retinal explants by PCR. I/R significantly diminished retinal ganglion cell number in vehicle-treated mice. Conversely, only a negligible reduction in retinal ganglion cell number was observed in resveratrol-treated mice following I/R. Endothelial function and autoregulation were markedly reduced, which was accompanied by increased ROS and RNS in retinal blood vessels of vehicle-exposed mice following I/R, whereas resveratrol preserved vascular endothelial function and autoregulation and blunted ROS and RNS formation. Moreover, resveratrol reduced I/R-induced mRNA expression for the prooxidant enzyme, nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2). Our data provide evidence that resveratrol protects from I/R-induced retinal ganglion cell loss and endothelial dysfunction in the murine retina by reducing nitro-oxidative stress possibly via suppression of NOX2 upregulation.

Pages