All

Douglas VP, Douglas KA, Reinshagen KL, Chwalisz BK. Case 292. Radiology 2021;299(1):234-236.Abstract
History A 24-year-old right-handed woman presented to a neuro-ophthalmology clinic in Massachusetts in the summer with acute binocular diplopia when looking down and to the left, which started about 1 month earlier. Her medical history was notable for Raynaud syndrome, recurrent streptococcal pharyngitis, and an allergy to amoxicillin. Three days prior to developing diplopia, she presented to an outside emergency department due to fever, chills, and back pain. She received ciprofloxacin for presumed urinary tract infection based on urinalysis, which demonstrated few bacteria and was negative for leukocyte esterase, nitrites, and white blood cells. She then presented again to an outside emergency department for diplopia evaluation. Initial MRI and MR angiography of the brain at that time did not demonstrate any relevant findings, and the patient was referred to our department for neuro-ophthalmic evaluation, where she was seen 4 weeks later. Neuro-ophthalmic examination revealed 20/20 visual acuity in both eyes, and a right hypertropia in left gaze, downgaze and right head tilt, with right eye excyclotorsion. There were no ocular signs of myasthenia gravis or thyroid eye disease, nor did the patient report ocular or systemic symptoms. She denied recent travel. High-spatial-resolution MRI of the brain and orbit were performed (Figs 1, 2).
Hanumunthadu D, Lescrauwaet B, Jaffe M, Sadda SV, Wiecek E, Hubschman JP, Patel PJ. Clinical Update on Metamorphopsia: Epidemiology, Diagnosis and Imaging. Curr Eye Res 2021;46(12):1777-1791.Abstract
Purpose: To discuss the pathophysiology of metamorphopsia, its characterisation using retinal imaging and methods of assessment of patient symptoms and visual function.Methods: A literature search of electronic databases was performedResults: Metamorphopsia has commonly been associated with vitreomacular interface disorders (such as epiretinal membrane) and has also regularly been noted in diseases of the retina and choroid, particularly age-related macular degeneration and central serous chorioretinopathy. Developments in optical coherence tomography retinal imaging have enabled improved imaging of the foveal microstructure and have led to the localisation of the pathophysiology of metamorphopsia within the retinal layers of the macula. Alteration of alignment of inner and outer retinal layers at various retinal loci has been identified using multimodal imaging in patients with metamorphopsia in a range of conditions. Although the Amsler Grid assessment of metamorphopsia is a useful clinical indicator, new emerging methods of metamorphopsia assessment with psychophysical tests such as M-CHARTS and preferential hyperacuity perimetry, have been developed.Conclusions: It appears that there is a complex relationship between visual acuity and metamorphopsia symptoms that vary between retinal conditions. Although metamorphopsia has traditionally been challenging to measure in the clinic, advances in technology promise more robust, easy-to-use tests. It is possible that home assessment of metamorphopsia, particularly in conditions such as age-related macular degeneration, may help to guide the need for further clinic evaluation and consideration of treatment.
Gjerde H, Mantagos IS. Charting the Globe: How Technologies Have Affected Our Understanding of Retinal Findings in Abusive Head Trauma/Shaken Baby Syndrome. Semin Ophthalmol 2021;36(4):205-209.Abstract
Purpose: Ocular findings such as retinal hemorrhages are common in abusive head trauma (AHT). Binocular indirect ophthalmoscopy has been the standard for assessing the eyes of children who are victims of AHT. However, technological advances have changed our understanding of retinal findings in AHT.Methods: Literature review on AHT - retinal findings, imaging technologies, models of representation, and telemedicine applications.Results: Many studies suggest vitreoretinal traction from repetitive acceleration-deceleration shearing forces during shaking plays an important role in the development of retinal findings in AHT. This is further supported by different imaging modalities [optical coherence tomography (OCT); magnetic resonance imaging (MRI); fluorescein angiography (FA)] and models of representation (animal and mechanical models; finite element analysis).Conclusion: Emerging technologies have augmented our diagnostic abilities, enhanced our understanding regarding the pathophysiology of retinal findings, and strengthened the link between vitreoretinal traction and ocular pathology in AHT. Telemedicine is also starting to play an important role in AHT.
Schill HM, Wolfe JM, Brady TF. Relationships between expertise and distinctiveness: Abnormal medical images lead to enhanced memory performance only in experts. Mem Cognit 2021;49(6):1067-1081.Abstract
Memories are encoded in a manner that depends on our knowledge and expectations ("schemas"). Consistent with this, expertise tends to improve memory: Experts have elaborated schemas in their domains of expertise, allowing them to efficiently represent information in this domain (e.g., chess experts have enhanced memory for realistic chess layouts). On the other hand, in most situations, people tend to remember abnormal or surprising items best-those that are also rare or out-of-the-ordinary occurrences (e.g., surprising-but not random-chess board configurations). This occurs, in part, because such images are distinctive relative to other images. In the current work, we ask how these factors interact in a particularly interesting case-the domain of radiology, where experts actively search for abnormalities. Abnormality in mammograms is typically focal but can be perceived in the global "gist" of the image. We ask whether, relative to novices, expert radiologists show improved memory for mammograms. We also test for any additional advantage for abnormal mammograms that can be thought of as unexpected or rare stimuli in screening. We find that experts have enhanced memory for focally abnormal images relative to normal images. However, radiologists showed no memory benefit for images of the breast that were not focally abnormal, but were only abnormal in their gist. Our results speak to the role of schemas and abnormality in expertise; the necessity for spatially localized abnormalities versus abnormalities in the gist in enhancing memory; and the nature of memory and decision-making in radiologists.
Wiegand I, Westenberg E, Wolfe JM. Order, please! Explicit sequence learning in hybrid search in younger and older age. Mem Cognit 2021;49(6):1220-1235.Abstract
Sequence learning effects in simple perceptual and motor tasks are largely unaffected by normal aging. However, less is known about sequence learning in more complex cognitive tasks that involve attention and memory processes and how this changes with age. In this study, we examined whether incidental and intentional sequence learning would facilitate hybrid visual and memory search in younger and older adults. Observers performed a hybrid search task, in which they memorized four or 16 target objects and searched for any of those target objects in displays with four or 16 objects. The memorized targets appeared either in a repeating sequential order or in random order. In the first experiment, observers were not told about the sequence before the experiment. Only a subset of younger adults and none of the older adults incidentally learned the sequence. The "learners" acquired explicit knowledge about the sequence and searched faster in the sequence compared to random condition. In the second experiment, observers were told about the sequence before the search task. Both younger and older adults searched faster in sequence blocks than random blocks. Older adults, however, showed this sequence-learning effect only in blocks with smaller target sets. Our findings indicate that explicit sequence knowledge can facilitate hybrid search, as it allows observers to predict the next target and restrict their visual and memory search. In older age, the sequence-learning effect is constrained by load, presumably due to age-related decline in executive functions.
Susanna FN, Melchior B, Paula JS, Boland MV, Myers JS, Wellik SR, Elze T, Pasquale LR, Shen LQ, Ritch R, Susanna R, Hood DC, Liebmann JM, De Moraes CG. Variability and Power to Detect Progression of Different Visual Field Patterns. Ophthalmol Glaucoma 2021;4(6):617-623.Abstract
PURPOSE: To compare the variability and ability to detect visual field (VF) progression of 24-2, central 12 locations of the 24-2 and 10-2 VF tests in eyes with abnormal VFs. DESIGN: Retrospective, multisite cohort. PARTICIPANTS: A total of 52 806 24-2 and 11 966 10-2 VF tests from 7307 eyes from the Glaucoma Research Network database were analyzed. Only eyes with ≥ 5 visits and ≥ 2 years of follow-up were included. METHODS: Linear regression models were used to calculate the rates of mean deviation (MD) change (slopes), whereas their residuals were used to assess variability across the entire MD range. Computer simulations (n = 10 000) based on real MD residuals of our sample were performed to estimate power to detect significant progression (P < 5%) at various rates of MD change. MAIN OUTCOME MEASURES: Time required to detect progression. RESULTS: For all 3 patterns, the MD variability was highest within the -5 to -20 decibel (dB) range and consistently lower with the 10-2 compared with 24-2 or central 24-2. Overall, time to detect confirmed significant progression at 80% power was the lowest with 10-2 VF, with a decrease of 14.6% to 18.5% when compared with 24-2 and a decrease of 22.9% to 26.5% when compared with central 24-2. CONCLUSIONS: Time to detect central VF progression was reduced with 10-2 MD compared with 24-2 and C24-2 MD in glaucoma eyes in this large dataset, in part because 10-2 tests had lower variability. These findings contribute to current evidence of the potential value of 10-2 testing in the clinical management of patients with glaucoma and in clinical trial design.
Schoemaker D, Arboleda-Velasquez JF. Notch3 Signaling and Aggregation as Targets for the Treatment of CADASIL and Other NOTCH3-Associated Small-Vessel Diseases. Am J Pathol 2021;191(11):1856-1870.Abstract
Mutations in the NOTCH3 gene can lead to small-vessel disease in humans, including the well-characterized cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a condition caused by NOTCH3 mutations altering the number of cysteine residues in the extracellular domain of Notch3. Growing evidence indicates that other types of mutations in NOTCH3, including cysteine-sparing missense mutations or frameshift and premature stop codons, can lead to small-vessel disease phenotypes of variable severity or penetrance. There are currently no disease-modifying therapies for small-vessel disease, including those associated with NOTCH3 mutations. A deeper understanding of underlying molecular mechanisms and clearly defined targets are needed to promote the development of therapies. This review discusses two key pathophysiological mechanisms believed to contribute to the emergence and progression of small-vessel disease associated with NOTCH3 mutations: abnormal Notch3 aggregation and aberrant Notch3 signaling. This review offers a summary of the literature supporting and challenging the relevance of these mechanisms, together with an overview of available preclinical experiments derived from these mechanisms. It highlights knowledge gaps and future research directions. In view of recent evidence demonstrating the relatively high frequency of NOTCH3 mutations in the population, and their potential role in promoting small-vessel disease, progress in the development of therapies for NOTCH3-associated small-vessel disease is urgently needed.
Kitko CL, Pidala J, Schoemans HM, Lawitschka A, Flowers ME, Cowen EW, Tkaczyk E, Farhadfar N, Jain S, Steven P, Luo ZK, Ogawa Y, Stern M, Yanik GA, Cuvelier GDE, Cheng G-S, Holtan SG, Schultz KR, Martin PJ, Lee SJ, Pavletic SZ, Wolff D, Paczesny S, Blazar BR, Sarantopoulos S, Socie G, Greinix H, Cutler C. National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: IIa. The 2020 Clinical Implementation and Early Diagnosis Working Group Report. Transplant Cell Ther 2021;27(7):545-557.Abstract
Recognition of the earliest signs and symptoms of chronic graft-versus-host disease (GVHD) that lead to severe manifestations remains a challenge. The standardization provided by the National Institutes of Health (NIH) 2005 and 2014 consensus projects has helped improve diagnostic accuracy and severity scoring for clinical trials, but utilization of these tools in routine clinical practice is variable. Additionally, when patients meet the NIH diagnostic criteria, many already have significant morbidity and possibly irreversible organ damage. The goals of this early diagnosis project are 2-fold. First, we provide consensus recommendations regarding implementation of the current NIH diagnostic guidelines into routine transplant care, outside of clinical trials, aiming to enhance early clinical recognition of chronic GVHD. Second, we propose directions for future research efforts to enable discovery of new, early laboratory as well as clinical indicators of chronic GVHD, both globally and for highly morbid organ-specific manifestations. Identification of early features of chronic GVHD that have high positive predictive value for progression to more severe manifestations of the disease could potentially allow for future pre-emptive clinical trials.
Elhusseiny AM, VanderVeen DK. Early Experience With Ahmed Clear Path Glaucoma Drainage Device in Childhood Glaucoma. J Glaucoma 2021;30(7):575-578.Abstract
PURPOSE: The aim was to evaluate the short-term outcomes of Ahmed clear path (ACP) valveless glaucoma drainage device in childhood glaucoma. METHODS: Retrospective chart review of all patients 16 years or below with childhood glaucoma who had ACP implantation at Boston Children's Hospital from December 2019 to June 2020 with at least 6 months follow-up period. RESULTS: The study included 7 eyes of 5 patients implanted by a single surgeon. The median follow-up was 12 months. The mean intraocular pressure (IOP) was reduced from 36±3.5 mm Hg on a mean of 2.7±0.6 glaucoma medications preoperatively to a mean IOP of 12.4±2.8 mm Hg (P<0.001) on a mean of 0.7±0.8 medications postoperatively at final follow-up (P=0.0009). Complete success was achieved in 4 eyes while qualified success was achieved in 3 eyes. CONCLUSION: The ACP glaucoma drainage device provided good short-term IOP control and technical advantages for implantation for pediatric eyes were observed.
O'Hare M, Amarnani D, Whitmore HAB, An M, Marino C, Ramos L, Delgado-Tirado S, Hu X, Chmielewska N, Chandrahas A, Fitzek A, Heinrich F, Steurer S, Ondruschka B, Glatzel M, Krasemann S, Sepulveda-Falla D, Lagares D, Pedron J, Bushweller JH, Liu P, Arboleda-Velasquez JF, Kim LA. Targeting Runt-Related Transcription Factor 1 Prevents Pulmonary Fibrosis and Reduces Expression of Severe Acute Respiratory Syndrome Coronavirus 2 Host Mediators. Am J Pathol 2021;191(7):1193-1208.Abstract
Pulmonary fibrosis (PF) can arise from unknown causes, as in idiopathic PF, or as a consequence of infections, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Current treatments for PF slow, but do not stop, disease progression. We report that treatment with a runt-related transcription factor 1 (RUNX1) inhibitor (Ro24-7429), previously found to be safe, although ineffective, as a Tat inhibitor in patients with HIV, robustly ameliorates lung fibrosis and inflammation in the bleomycin-induced PF mouse model. RUNX1 inhibition blunted fundamental mechanisms downstream pathologic mediators of fibrosis and inflammation, including transforming growth factor-β1 and tumor necrosis factor-α, in cultured lung epithelial cells, fibroblasts, and vascular endothelial cells, indicating pleiotropic effects. RUNX1 inhibition also reduced the expression of angiotensin-converting enzyme 2 and FES Upstream Region (FURIN), host proteins critical for SARS-CoV-2 infection, in mice and in vitro. A subset of human lungs with SARS-CoV-2 infection overexpress RUNX1. These data suggest that RUNX1 inhibition via repurposing of Ro24-7429 may be beneficial for PF and to battle SARS-CoV-2, by reducing expression of viral mediators and by preventing respiratory complications.
Armstrong GW, Kalra G, De Arrigunaga S, Friedman DS, Lorch AC. Anterior Segment Imaging Devices in Ophthalmic Telemedicine. Semin Ophthalmol 2021;36(4):149-156.Abstract
Obtaining a clear assessment of the anterior segment is critical for disease diagnosis and management in ophthalmic telemedicine. The anterior segment can be imaged with slit lamp cameras, robotic remote controlled slit lamps, cell phones, cell phone adapters, digital cameras, and webcams, all of which can enable remote care. The ability of these devices to identify various ophthalmic diseases has been studied, including cataracts, as well as abnormalities of the ocular adnexa, cornea, and anterior chamber. This article reviews the current state of anterior segment imaging for the purpose of ophthalmic telemedical care.
Gholizadeh S, Wang Z, Chen X, Dana R, Annabi N. Advanced nanodelivery platforms for topical ophthalmic drug delivery. Drug Discov Today 2021;26(6):1437-1449.Abstract
Conventional eye drops have several limitations, including the need for multiple applications per dose, hourly based dosage regiments, and suboptimal ocular bioavailability (<5%). The efficacy of topical ophthalmic medications can be significantly improved by controlling their contact time with the adherent mucin layer and by inducing sustained release properties, thus allowing for a prolonged contact time of the drug with the ocular tissues, which eventually will lead to improved drug bioavailability and a significant decrease in the frequency of eyedrop instillation. In this review, we critically highlight recent and innovative nanodrug delivery platforms, with a primary focus on the integration of nanotechnology, biomaterials, and polymer chemistry to facilitate precise spatial and temporal control over sustained drug release to the cornea.
Martinez-Carrasco R, Argüeso P, Fini EM. Membrane-associated mucins of the human ocular surface in health and disease. Ocul Surf 2021;21:313-330.Abstract
Mucins are a family of high molecular weight, heavily-glycosylated proteins produced by wet epithelial tissues, including the ocular surface epithelia. Densely-packed O-linked glycan chains added post-translationally confer the biophysical properties of hydration, lubrication, anti-adhesion and repulsion. Membrane-associated mucins (MAMs) are the distinguishing components of the mucosal glycocalyx. At the ocular surface, MAMs maintain wetness, lubricate the blink, stabilize the tear film, and create a physical barrier to the outside world. In addition, it is increasingly appreciated that MAMs function as cell surface receptors that transduce information from the outside to the inside of the cell. Recently, our team published a comprehensive review/perspectives article for molecular scientists on ocular surface MAMs, including previously unpublished data and analyses on two new genes MUC21 and MUC22, as well as new MAM functions and biological roles, comparing human and mouse (PMID: 31493487). The current article is a refocus for the audience of The Ocular Surface. First, we update the gene and protein information in a more concise form, and include a new section on glycosylation. Next, we discuss biological roles, with some new sections and further updating from our previous review. Finally, we provide a new chapter on MAM involvement in ocular surface disease. We end this with discussion of an emerging mechanism responsible for damage to the epithelia and their mucosal glycocalyces: the unfolded protein response (UPR). The UPR offers a novel target for therapeutic intervention.
Ratanawongphaibul K, Tsikata E, Zemplenyi M, Lee H, Margeta MA, Ondeck CL, Kim J, Pan BX, Petrakos P, Coleman AL, Yu F, de Boer JF, Chen TC. Earlier Detection of Glaucoma Progression Using High-Density 3-Dimensional Spectral-Domain OCT Optic Nerve Volume Scans. Ophthalmol Glaucoma 2021;4(6):604-616.Abstract
PURPOSE: To compare onset times of glaucoma progression among different glaucoma tests: disc photography (DP), visual field (VF) testing, 2-dimensional (2D) retinal nerve fiber layer (RNFL) thickness, and 3-dimensional (3D) spectral-domain (SD) OCT neuroretinal rim measurements. DESIGN: Prospective, longitudinal cohort study. PARTICIPANTS: One hundred twenty-four eyes of 124 patients with open-angle glaucoma. METHODS: Over a 5-year period, 124 patients with open-angle glaucoma underwent yearly DP, VF testing, SD OCT RNFL thickness scans, and optic nerve volume scans (Spectralis; Heidelberg Engineering), all performed on the same day. From high-density optic nerve volume scans, custom-built software calculated the minimum distance band (MDB) thickness, a 3D neuroretinal rim parameter. Patients were classified as glaucoma progressors or nonglaucoma progressors using event-based analysis. Progression by DP and VF testing occurred when 3 masked glaucoma specialists unanimously concurred. Progression by RNFL and MDB thickness occurred if change of more than test-retest variability was observed. Kaplan-Meier curves were constructed to analyze time-to-progression data. Kappa Coefficients were used to measure agreement of progressing eyes among methods. MAIN OUTCOME MEASURES: Time to glaucoma progression among all 4 methods. RESULTS: Global MDB thickness detected glaucoma progression in the highest percentage of eyes (52.4%) compared with DP (16.1%; P < 0.001) and global RNFL thickness (15.3%; P < 0.001). Global MDB thickness detected glaucoma progression earlier than either DP (23 months vs. 44 months; P < 0.001) or global RNFL thickness (23 months vs. 33 months; P < 0.001). Among MDB progressing eyes, 46.2% were confirmed simultaneously or later by other conventional methods. Agreement of glaucoma-progressing eyes for all 4 methods in paired fashion were slight to fair (κ = 0.095-0.300). CONCLUSIONS: High-density 3D SD OCT neuroretinal rim measurements detected glaucoma progression approximately 1 to 2 years earlier compared with current clinically available structural tests (i.e., DP and 2D RNFL thickness measurements).

Pages