All

Papadopoulos Z. Neovascular age-related macular degeneration and its association with Alzheimer's disease. Curr Aging Sci 2020;Abstract
In developed countries, people of advanced age go permanently blind most often due to age-related macular degeneration, while at global level, this disease is the third major cause of blindness, after cataract and glaucoma, according to the World Health Organisation. The number of individuals believed to suffer from the disease throughout the world has been approximated at 50 million. Age-related macular degeneration is classified as non-neovascular (dry, non-exudative) and neovascular (wet, exudative). The exudative form is less common than the non-exudative as it accounts for approximately 10 percent of the cases of the disease. However, it can be much more aggressive and results in a rapid and severe loss of central vision. Similarly with age-related macular degeneration, Alzheimer's disease is a late-onset, neurodegenerative disease affecting millions of people worldwide. Both of them are associated with age and share several features, including the presence of extracellular abnormal deposits associated with neuronal degeneration, drusen, and plaques, respectively. The present review article highlights the pathogenesis, the clinical features and the imaging modalities used for the diagnosis of neovascular age-related macular degeneration. A thorough overview of the effectiveness of anti-VEGF agents as well as of other treatment modalities that have either lost favour or are rarely used is provided in detail. Additionally, the common histologic, immunologic, and pathogenetic features of Alzheimer's disease and age-related macular degeneration are discussed in depth.
Glassman AR, Beaulieu WT, Stockdale CR, Beck RW, Bressler NM, Labriola LT, Melia M, Oliver K, Sun JK. Effect of telephone calls from a centralized coordinating center on participant retention in a randomized clinical trial. Clin Trials 2020;:1740774519894229.Abstract
BACKGROUND/AIMS: In clinical trials, participant retention is critical to reduce bias and maintain statistical power for hypothesis testing. Within a multi-center clinical trial of diabetic retinopathy, we investigated whether regular phone calls to participants from the coordinating center improved long-term participant retention. METHODS: Among 305 adults in the Diabetic Retinopathy Clinical Research Retina Network Protocol S randomized trial, 152 participants were randomly assigned to receive phone calls at baseline, 6 months, and annually through 3 years (annual contact group) while 153 participants were assigned to receive a phone call at baseline only (baseline contact group). All participants could be contacted if visits were missed. The main outcomes were visit completion, excluding deaths, at 2 years (the primary outcome time point) and at 5 years (the final time point). RESULTS: At baseline, 77% (117 of 152) of participants in the annual contact group and 76% (116 of 153) in the baseline contact group were successfully contacted. Among participants in the annual contact group active at each annual visit (i.e. not dropped from the study or deceased), 85% (125 of 147), 79% (108 of 136), and 88% (110 of 125) were contacted successfully by telephone around the time of the 1-, 2-, and 3-year visits, respectively. In the annual and baseline contact groups, completion rates for the 2-year primary outcome visit were 88% (129 of 147) versus 87% (125 of 144), respectively, with a risk ratio of 1.01 (95% confidence interval: 0.93-1.10,  = .81). At 5 years, the final study visit, participant completion rates were 67% (96 of 144) versus 66% (88 of 133) with a risk ratio of 1.01 (95% confidence interval = 0.85-1.19,  = .93). At 2 years, the completion rate of participants successfully contacted at baseline was 89% (202 of 226) versus 80% (52 of 65) among those not contacted successfully (risk ratio = 1.12, 95% confidence interval = 0.98-1.27,  = .09); at 5 years, the completion percentages by baseline contact success were 69% (148 of 213) versus 56% (36 of 64; risk ratio = 1.24, 95% confidence interval = 0.98-1.56,  = .08). CONCLUSION: Regular phone calls from the coordinating center to participants during follow-up in this randomized clinical trial did not improve long-term participant retention.
Lambert SR, VanderVeen DK, Aakalu VK, Kim SJ. Reply. Ophthalmology 2020;127(1):e8-e9.
Yu M, Lee S-M, Lee HS, Amouzegar A, Nakao T, Chen Y, Dana R. Neurokinin-1 Receptor Antagonism Ameliorates Dry Eye Disease by Inhibiting Antigen-Presenting Cell Maturation and T Helper 17 Cell Activation. Am J Pathol 2020;190(1):125-133.Abstract
Neuroinflammation plays an important role in the pathogenesis of ocular surface disease, including dry eye disease (DED), but little is known about the contribution of substance P (SP) to DED. In this study, we investigated the expression of SP at the ocular surface and evaluated its effect on maturation of antigen-presenting cells (APCs), the key cell component involved in the induction of type 17 helper T-cell (Th17) response in DED. The effect of topical blockade of SP signaling was further investigated using neurokinin-1 receptor (NK1R) inhibitors on APC maturation, Th17 cell activation, and disease severity in a mouse model of DED. The results demonstrate that SP is constitutively expressed at the ocular surface, and trigeminal ganglion neurons are the major source of SP in DED. SP derived from trigeminal ganglion enhanced the expression of major histocompatibility complex class II maturation marker by bone marrow-derived dendritic cells, an effect that is abrogated by blockade of SP signaling using NK1R antagonist spantide. Finally, using a well-established murine model of DED, topical treatment of DED mice with NK1R antagonists CP-99,994 and L-733,060 suppressed APC acquisition of major histocompatibility complex class II, reduced Th17 cell activity, and ameliorated DED severity. These findings are of translational value, as they suggest that antagonizing NK1R-mediated SP signaling may be an effective strategy in suppressing Th17-mediated ocular surface disease.
Wang M, Tichelaar J, Pasquale LR, Shen LQ, Boland MV, Wellik SR, De Moraes CG, Myers JS, Ramulu P, Kwon MY, Saeedi OJ, Wang H, Baniasadi N, Li D, Bex PJ, Elze T. Characterization of Central Visual Field Loss in End-stage Glaucoma by Unsupervised Artificial Intelligence. JAMA Ophthalmol 2020;Abstract
Importance: Although the central visual field (VF) in end-stage glaucoma may substantially vary among patients, structure-function studies and quality-of-life assessments are impeded by the lack of appropriate characterization of end-stage VF loss. Objective: To provide a quantitative characterization and classification of central VF loss in end-stage glaucoma. Design, Setting, and Participants: This retrospective cohort study collected data from 5 US glaucoma services from June 1, 1999, through October 1, 2014. A total of 2912 reliable 10-2 VFs of 1103 eyes from 1010 patients measured after end-stage 24-2 VFs with a mean deviation (MD) of -22 dB or less were included in the analysis. Data were analyzed from March 28, 2018, through May 23, 2019. Main Outcomes and Measures: Central VF patterns were determined by an artificial intelligence algorithm termed archetypal analysis. Longitudinal analyses were performed to investigate whether the development of central VF defect mostly affects specific vulnerability zones. Results: Among the 1103 patients with the most recent VFs, mean (SD) age was 70.4 (14.3) years; mean (SD) 10-2 MD, -21.5 (5.6) dB. Fourteen central VF patterns were determined, including the most common temporal sparing patterns (304 [27.5%]), followed by mostly nasal loss (280 [25.4%]), hemifield loss (169 [15.3%]), central island (120 [10.9%]), total loss (91 [8.3%]), nearly intact field (56 [5.1%]), inferonasal quadrant sparing (42 [3.8%]), and nearly total loss (41 [3.7%]). Location-specific median total deviation analyses partitioned the central VF into a more vulnerable superonasal zone and a less vulnerable inferotemporal zone. At 1-year and 2-year follow-up, new defects mostly occurred in the more vulnerable zone. Initial encroachments on an intact central VF at follow-up were more likely to be from nasal loss (11 [18.4%]; P < .001). One of the nasal loss patterns had a substantial chance at 2-year follow-up (8 [11.0%]; P = .004) to shift to total loss, whereas others did not. Conclusions and Relevance: In this study, central VF loss in end-stage glaucoma was found to exhibit characteristic patterns that might be associated with different subtypes. Initial central VF loss is likely to be nasal loss, and 1 specific type of nasal loss is likely to develop into total loss.
Gauthier AC, Wiggs JL. Childhood glaucoma genes and phenotypes: Focus on FOXC1 mutations causing anterior segment dysgenesis and hearing loss. Exp Eye Res 2020;190:107893.Abstract
Childhood glaucoma is an important cause of blindness world-wide. Eleven genes are currently known to cause inherited forms of glaucoma with onset before age 20. While all the early-onset glaucoma genes cause severe disease, considerable phenotypic variability is observed among mutations carriers. In particular, FOXC1 genetic variants are associated with a broad range of phenotypes including multiple forms of glaucoma and also systemic abnormalities, especially hearing loss. FOXC1 is a member of the forkhead family of transcription factors and is involved in neural crest development necessary for formation of anterior eye structures and also pharyngeal arches that form the middle ear bones. In this study we review the clinical phenotypes reported for known FOXC1 mutations and show that mutations in patients with reported ocular anterior segment abnormalities and hearing loss primarily disrupt the critically important forkhead domain. These results suggest that optimal care for patients affected with anterior segment dysgenesis should include screening for FOXC1 mutations and also testing for hearing loss.
Miyajima T, Melangath G, Zhu S, Deshpande N, Vasanth S, Mondal B, Kumar V, Chen Y, Price MO, Price FW, Rogan EG, Zahid M, Jurkunas UV. Loss of NQO1 generates genotoxic estrogen-DNA adducts in Fuchs Endothelial Corneal Dystrophy. Free Radic Biol Med 2020;147:69-79.Abstract
Fuchs Endothelial Corneal Dystrophy (FECD) is an age-related genetically complex disease characterized by increased oxidative DNA damage and progressive degeneration of corneal endothelial cells (HCEnCs). FECD has a greater incidence and advanced phenotype in women, suggesting a possible role of hormones in the sex-driven differences seen in the disease pathogenesis. In this study, catechol estrogen (4-OHE), the byproduct of estrogen metabolism, induced genotoxic estrogen-DNA adducts formation, macromolecular DNA damage, and apoptotic cell death in HCEnCs; these findings were potentiated by menadione (MN)-mediated reactive oxygen species (ROS). Expression of NQO1, a key enzyme that neutralizes reactive estrogen metabolites, was downregulated in FECD, indicating HCEnC susceptibility to reactive estrogen metabolism in FECD. NQO1 deficiency in vitro exacerbated the estrogen-DNA adduct formation and loss of cell viability, which was rescued by the supplementation of N-acetylcysteine, a ROS scavenger. Notably, overexpression of NQO1 in HCEnCs treated with MN and 4-OHE quenched the ROS formation, thereby reducing the DNA damage and endothelial cell loss. This study signifies a pivotal role for NQO1 in mitigating the macromolecular oxidative DNA damage arising from the interplay between intracellular ROS and impaired endogenous estrogen metabolism in post-mitotic ocular tissue cells. A dysfunctional Nrf2-NQO1 axis in FECD renders HCEnCs susceptible to catechol estrogens and estrogen-DNA adducts formation. This novel study highlights the potential role of NQO1-mediated estrogen metabolite genotoxicity in explaining the higher incidence of FECD in females.
Liu C, Miyajima T, Melangath G, Miyai T, Vasanth S, Deshpande N, Kumar V, Ong Tone S, Gupta R, Zhu S, Vojnovic D, Chen Y, Rogan EG, Mondal B, Zahid M, Jurkunas UV. Ultraviolet A light induces DNA damage and estrogen-DNA adducts in Fuchs endothelial corneal dystrophy causing females to be more affected. Proc Natl Acad Sci U S A 2020;117(1):573-583.Abstract
Fuchs endothelial corneal dystrophy (FECD) is a leading cause of corneal endothelial (CE) degeneration resulting in impaired visual acuity. It is a genetically complex and age-related disorder, with higher incidence in females. In this study, we established a nongenetic FECD animal model based on the physiologic outcome of CE susceptibility to oxidative stress by demonstrating that corneal exposure to ultraviolet A (UVA) recapitulates the morphological and molecular changes of FECD. Targeted irradiation of mouse corneas with UVA induced reactive oxygen species (ROS) production in the aqueous humor, and caused greater CE cell loss, including loss of ZO-1 junctional contacts and corneal edema, in female than male mice, characteristic of late-onset FECD. UVA irradiation caused greater mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) damage in female mice, indicative of the sex-driven differential response of the CE to UVA, thus accounting for more severe phenotype in females. The sex-dependent effect of UVA was driven by the activation of estrogen-metabolizing enzyme CYP1B1 and formation of reactive estrogen metabolites and estrogen-DNA adducts in female but not male mice. Supplementation of -acetylcysteine (NAC), a scavenger of reactive oxygen species (ROS), diminished the morphological and molecular changes induced by UVA in vivo. This study investigates the molecular mechanisms of environmental factors in FECD pathogenesis and demonstrates a strong link between UVA-induced estrogen metabolism and increased susceptibility of females for FECD development.
Veronese C, Pellegrini M, Maiolo C, Morara M, Armstrong GW, Ciardella AP. Multimodal ophthalmic imaging of staphylococcus aureus bacteremia associated with chorioretinitis, endocarditis, and multifocal brain abscesses. Am J Ophthalmol Case Rep 2020;17:100577.Abstract
Purpose: bacteriemia (SAB) as critical condition for the life and occasionally involves the eyes. The aim of this report is to describe the ocular involvement with multimodal imaging. Observations: A patient admitted for evaluation of acute onset of confusion, disorientation, and generalized malaise and found to have methicillin-resistant staphylococcus aureus (MRSA)-associated endocarditis and multifocal brain abscesses was evaluated by the ophthalmology service. The patient's visual acuity was 20/20 OU without relative afferent pupillary defect and normal intraocular pressures. Bedside anterior segment examination was normal. Posterior segment examination revealed intraretinal hemorrhages and Roth spots in the posterior pole of the right eye, and two deep well-defined focal white chorioretinal infiltrates and a hemorrhagic pigment epithelium detachment in the temporal quadrant of the left eye. Multimodal imaging was utilized to document these findings and ensure adequate antibiotic therapy. Conclusion: SAB has the potential for poor visual outcomes as well as significant morbidity and mortality. Multimodal imaging of SAB-related chorioretinitis allows for accurate diagnosis as well as assessment of response to antimicrobial therapy.
Freitag SK, Tanking T. A Nomenclature to Describe the Sequence of Visual Field Defects in Progressive Thyroid Eye Disease-Compressive Optic Neuropathy (An American Ophthalmological Society Thesis). Am J Ophthalmol 2020;213:293-305.Abstract
PURPOSE: To create a novel nomenclature to characterize the longitudinal sequence of visual field (VF) defects in patients with progression of thyroid eye disease-compressive optic neuropathy (TED-CON). METHODS: A retrospective review of records from 1 institution identified patients with progressive Humphrey VF defects secondary to TED-CON. The VF defects were analyzed by 2 independent reviewers and classified into 1 of 10 categories, divided into 3 stages that reflect the observed progression pattern, plus a miscellaneous category (stage X). Stage 1 VF defects are the earliest detectable and involve the inferior visual field with 3 levels of severity. Stage 2 VF defects include 2 distinguishable levels of severity and occur as the inferior defects advance above the horizontal midline to involve the superior VF. Stage 3 involves progression of stage 2 VF defects to complete loss of inferior and superior hemifields. RESULTS: Of 234 VFs in 37 eyes of 23 subjects, inferior defects were most common, including stage 1a (small inferior paracentral defect) in 22 of 234 VFs (9.4%), stage 1b (large inferior paracentral defect) in 112 of 234 VFs (47.9%), and stage 1c (inferior altitudinal defect) in 11 of 234 VFs (4.7%). Stage 2a (inferior altitudinal with superior advancement above the horizontal meridian) occurred in 41 of 234 VFs (17.5%), stage 2b (inferior altitudinal with superior arcuate) occurred in 6 of 234 VFs (2.6%), and stage 3 (total loss) occurred in 5 of 234 VFs (2.1%). The longitudinal sequence of VF defects from the 37 eyes of 23 patients was analyzed. Thirty-one of 37 eyes (83.8%) demonstrated a predictable progression pattern from least to more severe: stage 1a, stage 1b, stage 1c, stage 2a, stage 2b, and stage 3. A reverse order of VF defect progression was noted in 15 eyes with improving TED-CON. A minority of progression patterns (16.2%) originated from stage X (central/paracentral, enlarged blind spot, and scatter). CONCLUSIONS: Humphrey VF defects resulting from TED-CON are most often inferior, often have a predictable pattern of progression, and can be categorized into a novel descriptive nomenclature system. NOTE: Publication of this article is sponsored by the American Ophthalmological Society.
Jackson CJ, Myklebust Ernø IT, Ringstad H, Tønseth KA, Dartt DA, Utheim TP. Simple limbal epithelial transplantation: Current status and future perspectives. Stem Cells Transl Med 2020;9(3):316-327.Abstract
Damage to limbal stem cells as a result of injury or disease can lead to limbal stem cell deficiency (LSCD). This disease is characterized by decreased vision that is often painful and may progress to blindness. Clinical features include inflammation, neovascularization, and persistent cornea epithelial defects. Successful strategies for treatment involve transplantation of grafts harvested from the limbus of the alternate healthy eye, called conjunctival-limbal autograft (CLAU) and transplantation of limbal cell sheets cultured from limbal biopsies, termed cultured limbal epithelial transplantation (CLET). In 2012, Sangwan and colleagues presented simple limbal epithelial transplantation (SLET), a novel transplantation technique that combines the benefits of CLAU and CLET and avoids the challenges associated with both. In SLET a small biopsy from the limbus of the healthy eye is divided and distributed over human amniotic membrane, which is placed on the affected cornea. Outgrowth occurs from each small explant and a complete corneal epithelium is typically formed within 2 weeks. Advantages of SLET include reduced risk of iatrogenic LSCD occurring in the healthy cornea at harvest; direct transfer circumventing the need for cell culture; and the opportunity to perform biopsy harvest and transplantation in one operation. Success so far using SLET is comparable with CLAU and CLET. Of note, 336 of 404 (83%) operations using SLET resulted in restoration of the corneal epithelium, whereas visual acuity improved in 258 of the 373 (69%) reported cases. This review summarizes the results of 31 studies published on SLET since 2012. Progress, advantages, challenges, and suggestions for future studies are presented.
McKay TB, Hutcheon AEK, Zieske JD. Biology of corneal fibrosis: soluble mediators, integrins, and extracellular vesicles. Eye (Lond) 2020;34(2):271-278.Abstract
Corneal fibrosis develops in response to injury, infection, postsurgical complications, or underlying systemic disease that disrupts the homeostasis of the tissue leading to irregular extracellular matrix deposition within the stroma. The mechanisms that regulate corneal scarring are focused heavily on the canonical transforming growth factor-β pathway and relevant activators, and their role in promoting myofibroblast differentiation. In this paper, we discuss the biochemical pathways involved in corneal fibrosis in the context of different injury models-epithelial debridement, superficial keratectomy, and penetrating incision. We elaborate on the interplay of the major pro-fibrotic factors involved in corneal scar development (e.g., transforming growth factor-β1, thrombospondin-1, and ανβ6), and explore a novel role for extracellular vesicles secreted by the wounded epithelium and the importance of the basement membrane.

Pages