Angiogenesis

Park-Windhol C, D'Amore PA. Disorders of Vascular Permeability. Annu Rev Pathol 2016;11:251-81.Abstract

The endothelial barrier maintains vascular and tissue homeostasis and modulates many physiological processes, such as angiogenesis. Vascular barrier integrity can be disrupted by a variety of soluble permeability factors, and changes in barrier function can exacerbate tissue damage during disease progression. Understanding endothelial barrier function is critical for vascular homeostasis. Many of the signaling pathways promoting vascular permeability can also be triggered during disease, resulting in prolonged or uncontrolled vascular leak. It is believed that recovery of the normal vasculature requires diminishing this hyperpermeable state. Although the molecular mechanisms governing vascular leak have been studied over the last few decades, recent advances have identified new therapeutic targets that have begun to show preclinical and clinical promise. These approaches have been successfully applied to an increasing number of disease conditions. New perspectives regarding how vascular leak impacts the progression of various diseases are highlighted in this review.

Wang Y, Tadjuidje E, Pandey RN, Stefater JA, Smith LEH, Lang RA, Hegde RS. The Eyes Absent Proteins in Developmental and Pathological Angiogenesis. Am J Pathol 2016;186(3):568-78.Abstract

Management of neoangiogenesis remains a high-value therapeutic goal. A recently uncovered association between the DNA damage repair pathway and pathological angiogenesis could open previously unexplored possibilities for intervention. An attractive and novel target is the Eyes absent (EYA) tyrosine phosphatase, which plays a critical role in the repair versus apoptosis decision after DNA damage. This study examines the role of EYA in the postnatal development of the retinal vasculature and under conditions of ischemia-reperfusion encountered in proliferative retinopathies. We find that the ability of the EYA proteins to promote endothelial cell (EC) migration contributes to a delay in postnatal development of the retinal vasculature when Eya3 is deleted specifically in ECs. By using genetic and chemical biology tools, we show that EYA contributes to pathological angiogenesis in a model of oxygen-induced retinopathy. Both in vivo and in vitro, loss of EYA tyrosine phosphatase activity leads to defective assembly of γ-H2AX foci and thus to DNA damage repair in ECs under oxidative stress. These data reveal the potential utility of EYA tyrosine phosphatase inhibitors as therapeutic agents in inhibiting pathological neovascularization with a range of clinical applications.

Liu C-H, Sun Y, Li J, Gong Y, Tian KT, Evans LP, Morss PC, Fredrick TW, Saba NJ, Chen J. Endothelial microRNA-150 is an intrinsic suppressor of pathologic ocular neovascularization. Proc Natl Acad Sci U S A 2015;112(39):12163-8.Abstract

Pathologic ocular neovascularization commonly causes blindness. It is critical to identify the factors altered in pathologically proliferating versus normally quiescent vessels to develop effective targeted therapeutics. MicroRNAs regulate both physiological and pathological angiogenesis through modulating expression of gene targets at the posttranscriptional level. However, it is not completely understood if specific microRNAs are altered in pathologic ocular blood vessels, influencing vascular eye diseases. Here we investigated the potential role of a specific microRNA, miR-150, in regulating ocular neovascularization. We found that miR-150 was highly expressed in normal quiescent retinal blood vessels and significantly suppressed in pathologic neovessels in a mouse model of oxygen-induced proliferative retinopathy. MiR-150 substantially decreased endothelial cell function including cell proliferation, migration, and tubular formation and specifically suppressed the expression of multiple angiogenic regulators, CXCR4, DLL4, and FZD4, in endothelial cells. Intravitreal injection of miR-150 mimic significantly decreased pathologic retinal neovascularization in vivo in both wild-type and miR-150 knockout mice. Loss of miR-150 significantly promoted angiogenesis in aortic rings and choroidal explants ex vivo and laser-induced choroidal neovascularization in vivo. In conclusion, miR-150 is specifically enriched in quiescent normal vessels and functions as an endothelium-specific endogenous inhibitor of pathologic ocular neovascularization.

Srinivasan S, Chitalia V, Meyer RD, Hartsough E, Mehta M, Harrold I, Anderson N, Feng H, Smith LEH, Jiang Y, Costello CE, Rahimi N. Hypoxia-induced expression of phosducin-like 3 regulates expression of VEGFR-2 and promotes angiogenesis. Angiogenesis 2015;18(4):449-62.Abstract

Expression and activation of vascular endothelial growth factor receptor 2 (VEGFR-2) by VEGF ligands are the main events in the stimulation of pathological angiogenesis. VEGFR-2 expression is generally low in the healthy adult blood vessels, but its expression is markedly increased in the pathological angiogenesis. In this report, we demonstrate that phosducin-like 3 (PDCL3), a recently identified chaperone protein involved in the regulation of VEGFR-2 expression, is required for angiogenesis in zebrafish and mouse. PDCL3 undergoes N-terminal methionine acetylation, and this modification affects PDCL3 expression and its interaction with VEGFR-2. Expression of PDCL3 is regulated by hypoxia, the known stimulator of angiogenesis. The mutant PDCL3 that is unable to undergo N-terminal methionine acetylation was refractory to the effect of hypoxia. The siRNA-mediated silencing of PDCL3 decreased VEGFR-2 expression resulting in a decrease in VEGF-induced VEGFR-2 phosphorylation, whereas PDCL3 over-expression increased VEGFR-2 protein. Furthermore, we show that PDCL3 protects VEGFR-2 from misfolding and aggregation. The data provide new insights for the chaperone function of PDCL3 in angiogenesis and the roles of hypoxia and N-terminal methionine acetylation in PDCL3 expression and its effect on VEGFR-2.

Sun Y, Liu C-H, SanGiovanni JP, Evans LP, Tian KT, Zhang B, Stahl A, Pu WT, Kamenecka TM, Solt LA, Chen J. Nuclear receptor RORα regulates pathologic retinal angiogenesis by modulating SOCS3-dependent inflammation. Proc Natl Acad Sci U S A 2015;112(33):10401-6.Abstract

Pathologic ocular angiogenesis is a leading cause of blindness, influenced by both dysregulated lipid metabolism and inflammation. Retinoic-acid-receptor-related orphan receptor alpha (RORα) is a lipid-sensing nuclear receptor with diverse biologic function including regulation of lipid metabolism and inflammation; however, its role in pathologic retinal angiogenesis remains poorly understood. Using a mouse model of oxygen-induced proliferative retinopathy, we showed that RORα expression was significantly increased and genetic deficiency of RORα substantially suppressed pathologic retinal neovascularization. Loss of RORα led to decreased levels of proinflammatory cytokines and increased levels of antiinflammatory cytokines in retinopathy. RORα directly suppressed the gene transcription of suppressors of cytokine signaling 3 (SOCS3), a critical negative regulator of inflammation. Inhibition of SOCS3 abolished the antiinflammatory and vasoprotective effects of RORα deficiency in vitro and in vivo. Moreover, treatment with a RORα inverse agonist SR1001 effectively protected against pathologic neovascularization in both oxygen-induced retinopathy and another angiogenic model of very-low-density lipoprotein receptor (Vldlr)-deficient (Vldlr (-/-) ) mice with spontaneous subretinal neovascularization, whereas a RORα agonist worsened oxygen-induced retinopathy. Our data demonstrate that RORα is a novel regulator of pathologic retinal neovascularization, and RORα inhibition may represent a new way to treat ocular neovascularization.

Shao Z, Fu Z, Stahl A, Joyal J-S, Hatton C, Juan A, Hurst C, Evans L, Cui Z, Pei D, Gong Y, Xu D, Tian K, Bogardus H, Edin ML, Lih F, Sapieha P, Chen J, Panigrahy D, Hellstrom A, Zeldin DC, Smith LEH. Cytochrome P450 2C8 ω3-long-chain polyunsaturated fatty acid metabolites increase mouse retinal pathologic neovascularization--brief report. Arterioscler Thromb Vasc Biol 2014;34(3):581-6.Abstract
OBJECTIVE: Regulation of angiogenesis is critical for many diseases. Specifically, pathological retinal neovascularization, a major cause of blindness, is suppressed with dietary ω3-long-chain polyunsaturated fatty acids (ω3LCPUFAs) through antiangiogenic metabolites of cyclooxygenase and lipoxygenase. Cytochrome P450 epoxygenases (CYP2C8) also metabolize LCPUFAs, producing bioactive epoxides, which are inactivated by soluble epoxide hydrolase (sEH) to transdihydrodiols. The effect of these enzymes and their metabolites on neovascularization is unknown. APPROACH AND RESULTS: The mouse model of oxygen-induced retinopathy was used to investigate retinal neovascularization. We found that CYP2C (localized in wild-type monocytes/macrophages) is upregulated in oxygen-induced retinopathy, whereas sEH is suppressed, resulting in an increased retinal epoxide:diol ratio. With a ω3LCPUFA-enriched diet, retinal neovascularization increases in Tie2-driven human-CYP2C8-overexpressing mice (Tie2-CYP2C8-Tg), associated with increased plasma 19,20-epoxydocosapentaenoic acid and retinal epoxide:diol ratio. 19,20-Epoxydocosapentaenoic acids and the epoxide:diol ratio are decreased with overexpression of sEH (Tie2-sEH-Tg). Overexpression of CYP2C8 or sEH in mice does not change normal retinal vascular development compared with their wild-type littermate controls. The proangiogenic role in retina of CYP2C8 with both ω3LCPUFA and ω6LCPUFA and antiangiogenic role of sEH in ω3LCPUFA metabolism were corroborated in aortic ring assays. CONCLUSIONS: Our results suggest that CYP2C ω3LCPUFA metabolites promote retinal pathological angiogenesis. CYP2C8 is part of a novel lipid metabolic pathway influencing retinal neovascularization.
Takeuchi K, Yanai R, Kumase F, Morizane Y, Suzuki J, Kayama M, Brodowska K, Nakazawa M, Miller JW, Connor KM, Vavvas DG. EGF-like-domain-7 is required for VEGF-induced Akt/ERK activation and vascular tube formation in an ex vivo angiogenesis assay. PLoS One 2014;9(3):e91849.Abstract
EGFL7 is a secreted angiogenic factor, which in contrast to the well-known secreted angiogenic molecules VEGF and FGF-2, is almost exclusively expressed by endothelial cells and may act in an autocrine fashion. Prior studies have shown EGFL7 to mediate its angiogenic effects by interfering with the Notch pathway and/or via the intronic miR126. Less is known about its effects on VEGF signaling. We wanted to investigate the role of epidermal growth factor-like domain 7 (EGFL7) in VEGF-driven angiogenesis using an ex vivo Matrigel-embedded mouse eye cup assay and siRNA mediated knockdown of EGFL7 by siRNA. Our results suggested that VEGF-induced vascular tube formation was significantly impaired after siRNA downregulation of EGFL7. In addition, knockdown of EGFL7 suppressed VEGF upregulation of phospho-Akt and phospho-Erk(1/2) in endothelial cells, but did not alter VEGFR phosphorylation and neuropilin-1 protein expression or miR126 expression. Thus, in conclusion, EGFL7 is required for VEGF upregulation of the Akt/Erk (1/2) pathway during angiogenesis, and may represent a new therapeutic target in diseases of pathological neovascularization.
Miller JW. The Harvard angiogenesis story. Surv Ophthalmol 2014;59(3):361-4.Abstract
I shall discuss the work of researchers at Harvard Medical School who came together in the early 1990s. Scattered across various Harvard-affiliated hospitals and research centers, these individuals were unified by their interest in ocular neovascularization. Together and separately, they investigated models of ocular neovascularization, exploring tumor angiogenesis in eye development and disease.
Shao Z, Friedlander M, Hurst CG, Cui Z, Pei DT, Evans LP, Juan AM, Tahiri H, Tahir H, Duhamel F, Chen J, Sapieha P, Chemtob S, Joyal J-S, Smith LEH. Choroid sprouting assay: an ex vivo model of microvascular angiogenesis. PLoS One 2013;8(7):e69552.Abstract
Angiogenesis of the microvasculature is central to the etiology of many diseases including proliferative retinopathy, age-related macular degeneration and cancer. A mouse model of microvascular angiogenesis would be very valuable and enable access to a wide range of genetically manipulated tissues that closely approximate small blood vessel growth in vivo. Vascular endothelial cells cultured in vitro are widely used, however, isolating pure vascular murine endothelial cells is technically challenging. A microvascular mouse explant model that is robust, quantitative and can be reproduced without difficulty would overcome these limitations. Here we characterized and optimized for reproducibility an organotypic microvascular angiogenesis mouse and rat model from the choroid, a microvascular bed in the posterior of eye. The choroidal tissues from C57BL/6J and 129S6/SvEvTac mice and Sprague Dawley rats were isolated and incubated in Matrigel. Vascular sprouting was comparable between choroid samples obtained from different animals of the same genetic background. The sprouting area, normalized to controls, was highly reproducible between independent experiments. We developed a semi-automated macro in ImageJ software to allow for more efficient quantification of sprouting area. Isolated choroid explants responded to manipulation of the external environment while maintaining the local interactions of endothelial cells with neighboring cells, including pericytes and macrophages as evidenced by immunohistochemistry and fluorescence-activated cell sorting (FACS) analysis. This reproducible ex vivo angiogenesis assay can be used to evaluate angiogenic potential of pharmacologic compounds on microvessels and can take advantage of genetically manipulated mouse tissue for microvascular disease research.
Hisatomi T, Nakao S, Murakami Y, Noda K, Nakazawa T, Notomi S, Connolly E, She H, Almulki L, Ito Y, Vavvas DG, Ishibashi T, Miller JW. The regulatory roles of apoptosis-inducing factor in the formation and regression processes of ocular neovascularization. Am J Pathol 2012;181(1):53-61.Abstract
The role of apoptosis in the formation and regression of neovascularization is largely hypothesized, although the detailed mechanism remains unclear. Inflammatory cells and endothelial cells both participate and interact during neovascularization. During the early stage, these cells may migrate into an angiogenic site and form a pro-angiogenic microenvironment. Some angiogenic vessels appear to regress, whereas some vessels mature and remain. The control mechanisms of these processes, however, remain unknown. Previously, we reported that the prevention of mitochondrial apoptosis contributed to cellular survival via the prevention of the release of proapoptotic factors, such as apoptosis-inducing factor (AIF) and cytochrome c. In this study, we investigated the regulatory role of cellular apoptosis in angiogenesis using two models of ocular neovascularization: laser injury choroidal neovascularization and VEGF-induced corneal neovascularization in AIF-deficient mice. Averting apoptosis in AIF-deficient mice decreased apoptosis of leukocytes and endothelial cells compared to wild-type mice and resulted in the persistence of these cells at angiogenic sites in vitro and in vivo. Consequently, AIF deficiency expanded neovascularization and diminished vessel regression in these two models. We also observed that peritoneal macrophages from AIF-deficient mice showed anti-apoptotic survival compared to wild-type mice under conditions of starvation. Our data suggest that AIF-related apoptosis plays an important role in neovascularization and that mitochondria-regulated apoptosis could offer a new target for the treatment of pathological angiogenesis.
Dela Paz NG, Walshe TE, Leach LL, Saint-Geniez M, D'Amore PA. Role of shear-stress-induced VEGF expression in endothelial cell survival. J Cell Sci 2012;125(Pt 4):831-43.Abstract
Vascular endothelial growth factor (VEGF) plays a crucial role in developmental and pathological angiogenesis. Expression of VEGF in quiescent adult tissue suggests a potential role in the maintenance of mature blood vessels. We demonstrate, using a Vegf-lacZ reporter mouse model, that VEGF is expressed by arterial but not by venous or capillary endothelial cells (ECs) in vivo. Using an in vitro model, we show that arterial shear stress of human umbilical vein ECs (HUVECs) decreases apoptosis and increases VEGF expression, which is mediated by the induction of Krüppel-like factor 2 (KLF2). Additionally, shear stress stimulates the expression of VEGF receptor 2 (VEGFR2) and is associated with its activation. Knockdown of VEGF in shear stressed HUVECs blocks the protective effect of shear stress, resulting in EC apoptosis equivalent to that in control ECs cultured under static conditions. Similarly, treatment of ECs subjected to arterial shear stress with the VEGF receptor tyrosine kinase inhibitor SU1498, or VEGFR2 neutralizing antiserum, led to increased apoptosis, demonstrating that the mechanoprotection from increased shear is mediated by VEGFR2. Taken together, these studies suggest that arterial flow induces VEGF-VEGFR2 autocrine-juxtacrine signaling, which is a previously unidentified mechanism for vascular EC survival in adult arterial blood vessels.
Kim LA, D'Amore PA. A brief history of anti-VEGF for the treatment of ocular angiogenesis. Am J Pathol 2012;181(2):376-9.Abstract
In 1994, The American Journal of Pathology published a key article reporting that hypoxic retina produces vascular endothelial growth factor (VEGF), suggesting a role for VEGF in ocular neovascularization. Subsequent developments in anti-VEGF treatment for neovascular eye disease have improved visual outcomes and changed the standard of care in retinal medicine and ophthalmology.
Stahl A, Joyal J-S, Chen J, Sapieha P, Juan AM, Hatton CJ, Pei DT, Hurst CG, Seaward MR, Krah NM, Dennison RJ, Greene ER, Boscolo E, Panigrahy D, Smith LEH. SOCS3 is an endogenous inhibitor of pathologic angiogenesis. Blood 2012;120(14):2925-9.Abstract
Inflammatory cytokines and growth factors drive angiogenesis independently; however, their integrated role in pathologic and physiologic angiogenesis is not fully understood. Suppressor of cytokine signaling-3 (SOCS3) is an inducible negative feedback regulator of inflammation and growth factor signaling. In the present study, we show that SOCS3 curbs pathologic angiogenesis. Using a Cre/Lox system, we deleted SOCS3 in vessels and studied developmental and pathologic angiogenesis in murine models of oxygen-induced retinopathy and cancer. Conditional loss of SOCS3 leads to increased pathologic neovascularization, resulting in pronounced retinopathy and increased tumor size. In contrast, physiologic vascularization is not regulated by SOCS3. In vitro, SOCS3 knockdown increases proliferation and sprouting of endothelial cells costimulated with IGF-1 and TNFα via reduced feedback inhibition of the STAT3 and mTOR pathways. These results identify SOCS3 as a pivotal endogenous feedback inhibitor of pathologic angiogenesis and a potential therapeutic target acting at the converging crossroads of growth factor- and cytokine-induced vessel growth.

Pages