Diabetic Eye Disease

Bressler SB, Almukhtar T, Aiello LP, Bressler NM, Ferris FL, Glassman AR, Greven CM, Greven CM. Green or yellow laser treatment for diabetic macular edema: exploratory assessment within the Diabetic Retinopathy Clinical Research Network. Retina 2013;33(10):2080-8.Abstract
PURPOSE: Explore differences in green compared with yellow focal/grid laser treatment on functional and anatomical endpoints in eyes with diabetic macular edema. METHODS: Data from two randomized clinical trials were evaluated for differences in visual acuity and optical coherence tomography parameters for eyes assigned to sham injection + prompt laser, ranibizumab + prompt laser, or prompt laser only: among subgroups of eyes treated exclusively and electively with either green or yellow laser. RESULTS: In the sham injection + prompt laser group, the mean visual acuity letter score change for eyes receiving green and yellow laser treatment, respectively, was +2.4 ± 14 and +5.1 ± 13 at the 52-week visit (P = 0.06) and +2.4 ± 15 and +6.0 ± 13 at the 104-week visit (P = 0.13), with no corresponding evidence of differences in optical coherence tomography thickness. When comparing wavelength groups in the ranibizumab + prompt laser and prompt laser-only groups, meaningful differences in visual acuity and optical coherence tomography thickness were not detected at 1 year or 2 years. CONCLUSION: A trend toward improved vision outcome with yellow laser observed in one trial was not corroborated by anatomical outcomes or by the other trial. In this study, without random assignment to different wavelengths controlling for bias and confounding, it is not possible to determine whether one wavelength is better than the other.
Silva PS, Cavallerano JD, Sun JK, Soliman AZ, Aiello LM, Aiello LP. Peripheral lesions identified by mydriatic ultrawide field imaging: distribution and potential impact on diabetic retinopathy severity. Ophthalmology 2013;120(12):2587-2595.Abstract
OBJECTIVE: To assess diabetic retinopathy (DR) as determined by lesions identified using mydriatic ultrawide field imaging (DiSLO200; Optos plc, Scotland, UK) compared with Early Treatment Diabetic Retinopathy Study (ETDRS) 7-standard field film photography. DESIGN: Prospective comparative study of DiSLO200, ETDRS 7-standard field film photographs, and dilated fundus examination (DFE). PARTICIPANTS: A total of 206 eyes of 103 diabetic patients selected to represent all levels of DR. METHODS: Subjects had DiSLO200, ETDRS 7-standard field film photographs, and DFE. Images were graded for severity and distribution of DR lesions. Discrepancies were adjudicated, and images were compared side by side. MAIN OUTCOME MEASURES: Distribution of hemorrhage and/or microaneurysm (H/Ma), venous beading (VB), intraretinal microvascular abnormality (IRMA), and new vessels elsewhere (NVE). Kappa (κ) and weighted κ statistics for agreement. RESULTS: The distribution of DR severity by ETDRS 7-standard field film photographs was no DR 12.5%; nonproliferative DR mild 22.5%, moderate 30%, and severe/very severe 8%; and proliferative DR 27%. Diabetic retinopathy severity between DiSLO200 and ETDRS film photographs matched in 80% of eyes (weighted κ = 0.74,κ = 0.84) and was within 1 level in 94.5% of eyes. DiSLO200 and DFE matched in 58.8% of eyes (weighted κ = 0.69,κ = 0.47) and were within 1 level in 91.2% of eyes. Forty eyes (20%) had DR severity discrepancies between DiSLO200 and ETDRS film photographs. The retinal lesions causing discrepancies were H/Ma 52%, IRMA 26%, NVE 17%, and VB 4%. Approximately one-third of H/Ma, IRMA, and NVE were predominantly outside ETDRS fields. Lesions identified on DiSLO200 but not ETDRS film photographs suggested a more severe DR level in 10% of eyes. Distribution in the temporal, superotemporal, inferotemporal, superonasal, and inferonasal fields was 77%, 72%, 61%, 65%, and 59% for H/Ma, respectively (P<0.0001); 22%, 24%, 21%, 28%, and 22% for VB, respectively (P = 0.009); 52%, 40%, 29%, 47%, and 36% for IRMA, respectively (P<0.0001), and 8%, 4%, 4%, 8%, and 5% for NVE, respectively (P = 0.03). All lesions were more frequent in the temporal fields compared with the nasal fields (P<0.0001). CONCLUSIONS: DiSLO200 images had substantial agreement with ETDRS film photographs and DFE in determining DR severity. On the basis of DiSLO200 images, significant nonuniform distribution of DR lesions was evident across the retina. The additional peripheral lesions identified by DiSLO200 in this cohort suggested a more severe assessment of DR in 10% of eyes than was suggested by the lesions within the ETDRS fields. However, the implications of peripheral lesions on DR progression within a specific ETDRS severity level over time are unknown and need to be evaluated prospectively.
Al-Latayfeh M, Silva PS, Sun JK, Aiello LP. Antiangiogenic therapy for ischemic retinopathies. Cold Spring Harb Perspect Med 2012;2(6):a006411.Abstract
Neovascularization is a common pathological process in various retinal vascular disorders including diabetic retinopathy (DR), age-related macular degeneration (AMD) and retinal vein occlusion (RVO). The development of neovascular vessels may lead to complications such as vitreous hemorrhage, fibrovascular tissue formation, and traction retinal detachments. Ultimately, irreversible vision loss may result. Various proangiogenic factors are involved in these complex processes. Different antiangiogenic drugs have been formulated in an attempt treat these vascular disorders. One factor that plays a major role in the development of retinal neovascularization is vascular endothelial growth factor (VEGF). Anti-VEGF agents are currently FDA approved for the treatment of AMD and RVO. They are also extensively used as an off-label treatment for diabetic macular edema (DME), proliferative DR, and neovascular glaucoma. However, at this time, the long-term safety of chronic VEGF inhibition has not been extensively evaluated. A large and rapidly expanding body of research on angiogenesis is being conducted at multiple centers across the globe to determine the exact contributions and interactions among a variety of angiogenic factors in an effort to determine the therapeutic potential of antiangiogenic agent in the treatment of a variety of retinal diseases.
Gologorsky D, Thanos A, Vavvas D. Therapeutic interventions against inflammatory and angiogenic mediators in proliferative diabetic retinopathy. Mediators Inflamm 2012;2012:629452.Abstract
The global prevalence of diabetes is estimated to be 336 million people, with diabetic complications contributing to significant worldwide morbidity and mortality. Diabetic retinopathy results from cumulative microvascular damage to the retina and inflammation is recognized as a critical driver of this disease process. This paper outlines the pathophysiology leading to proliferative diabetic retinopathy and highlights many of the inflammatory, angiogenic, and cytokine mediators implicated in the development and progression of this disease. We focus a detailed discussion on the current targeted therapeutic interventions used to treat diabetic retinopathy.
Silva PS, Cavallerano JD, Sun JK, Noble J, Aiello LM, Aiello LP. Nonmydriatic ultrawide field retinal imaging compared with dilated standard 7-field 35-mm photography and retinal specialist examination for evaluation of diabetic retinopathy. Am J Ophthalmol 2012;154(3):549-559.e2.Abstract
PURPOSE: To compare nonmydriatic stereoscopic Optomap ultrawide field images with dilated stereoscopic Early Treatment Diabetic Retinopathy Study 7-standard field 35-mm color 30-degree fundus photographs (ETDRS photography) and clinical examination for determining diabetic retinopathy (DR) and diabetic macular edema (DME) severity. DESIGN: Single-site, prospective, comparative, instrument validation study. METHODS: One hundred three diabetic patients (206 eyes) representing the full spectrum of DR severity underwent nonmydriatic ultrawide field 100-degree and 200-degree imaging, dilated ETDRS photography, and dilated fundus examination by a retina specialist. Two independent readers graded images to determine DR and DME severity. A third masked retina specialist adjudicated discrepancies. RESULTS: Based on ETDRS photography (n = 200), the results were as follows: no DR (n = 25 eyes [12.5%]), mild nonproliferative DR (NPDR; 47 [23.5%]), moderate NPDR (61 [30.5%]), severe NPDR (11 [5.5%]), very severe NPDR (3 [1.5%]), and proliferative DR (52 [2.5%]). One (0.5%) eye was ungradable and 6 eyes did not complete ETDRS photography. No DME was found in 114 eyes (57.0%), DME was found in 28 eyes (14.0%), and clinically significant DME was found in 47 eyes (23.5%), and 11 (5.5%) eyes were ungradable. Exact DR severity agreement between ultrawide field 100-degree imaging and ETDRS photography occurred in 84%, with agreement within 1 level in 91% (K(W) = 0.85; K = 0.79). Nonmydriatic ultrawide field images exactly matched clinical examination results for DR in 70% and were within 1 level in 93% (K(W) = 0.71; K = 0.61). Nonmydriatic ultrawide field imaging acquisition time was less than half that of dilated ETDRS photography (P < .0001). CONCLUSIONS: Nonmydriatic ultrawide field images compare favorably with dilated ETDRS photography and dilated fundus examination in determining DR and DME severity; however, they are acquired more rapidly. If confirmed in broader diabetic populations, nonmydriatic ultrawide field imaging may prove to be beneficial in DR evaluation in research and clinical settings.
Liu Y, Biarnés Costa M, Gerhardinger C. IL-1β is upregulated in the diabetic retina and retinal vessels: cell-specific effect of high glucose and IL-1β autostimulation. PLoS One 2012;7(5):e36949.Abstract
Many molecular and cellular abnormalities detected in the diabetic retina support a role for IL-1β-driven neuroinflammation in the pathogenesis of diabetic retinopathy. IL-1β is well known for its role in the induction and, through autostimulation, amplification of neuroinflammation. Upregulation of IL-1β has been consistently detected in the diabetic retina; however, the mechanisms and cellular source of IL-1β overexpression are poorly understood. The aim of this study was to investigate the effect of high glucose and IL-1β itself on IL-1β expression in microglial, macroglial (astrocytes and Müller cells) and retinal vascular endothelial cells; and to study the effect of diabetes on the expression of IL-1β in isolated retinal vessels and on the temporal pattern of IL-1β upregulation and glial reactivity in the retina of streptozotocin-diabetic rats. IL-1β was quantified by RealTime RT-PCR and ELISA, glial fibrillar acidic protein, α2-macroglobulin, and ceruloplasmin by immunoblotting. We found that high glucose induced a 3-fold increase of IL-1β expression in retinal endothelial cells but not in macroglia and microglia. IL-1β induced its own synthesis in endothelial and macroglial cells but not in microglia. In retinal endothelial cells, the high glucose-induced IL-1β overexpression was prevented by calphostin C, a protein kinase C inhibitor. The retinal vessels of diabetic rats showed increased IL-1β expression as compared to non-diabetic rats. Retinal expression of IL-1β increased early after the induction of diabetes, continued to increase with progression of the disease, and was temporally associated with upregulation of markers of glial activation. These findings point to hyperglycemia as the trigger and to the endothelium as the origin of the initial retinal upregulation of IL-1β in diabetes; and to IL-1β itself, via autostimulation in endothelial and macroglial cells, as the mechanism of sustained IL-1β overexpression. Interrupting the vicious circle triggered by IL-1β autostimulation could limit the progression of diabetic retinopathy.
Sapieha P, Chen J, Stahl A, Seaward MR, Favazza TL, Juan AM, Hatton CJ, Joyal J-S, Krah NM, Dennison RJ, Tang J, Kern TS, Akula JD, Smith LEH. Omega-3 polyunsaturated fatty acids preserve retinal function in type 2 diabetic mice. Nutr Diabetes 2012;2:e36.Abstract
OBJECTIVE: Diabetic retinopathy (DR) is associated with hyperglycemia-driven microvascular pathology and neuronal compromise in the retina. However, DR is also linked to dyslipidemia. As omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) are protective in proliferative retinopathy, we investigated the capacity of ω-3PUFAs to preserve retinal function in a mouse model of type 2 diabetes mellitus (T2DM). DESIGN: Male leptin-receptor-deficient (db/db) mice were maintained for 22 weeks (4 weeks-26 weeks of life) on calorically and compositionally matched diets, except for 2% enrichment in either ω-3 or ω-6PUFAs. Visual function was assessed at 9, 14 and 26 weeks by electroretinography. Retinal capillary and neuronal integrity, as well as glucose challenge responses, were assessed on each diet. RESULTS: The ω-3PUFA diet significantly preserved retinal function in the mouse model of T2DM to levels similar to those observed in nondiabetic control mice on normal chow. Conversely, retinal function gradually deteriorated in db/db mice on a ω-6PUFA-rich diet. There was also an enhanced ability of ω-3PUFA-fed mice to respond to glucose challenge. The protection of visual function appeared to be independent of cytoprotective or anti-inflammatory effects of ω-3PUFAs. CONCLUSION: This study identifies beneficial effects of dietary ω-3PUFAs on visual function in T2DM. The data are consistent with dyslipidemia negatively impacting retinal function. As ω-3PUFA lipid dietary interventions are readily available, safe and inexpensive, increasing ω-3PUFA intake in diabetic patients may slow the progression of vision loss in T2DM.
Maker MP, Noble J, Silva PS, Cavallerano JD, Murtha TJ, Sun JK, Aiello LM, Bursell S-E, Aiello LP. Automated Retinal Imaging System (ARIS) compared with ETDRS protocol color stereoscopic retinal photography to assess level of diabetic retinopathy. Diabetes Technol Ther 2012;14(6):515-22.Abstract
BACKGROUND: Early Treatment Diabetic Retinopathy Study (ETDRS) seven-standard-field color stereoscopic retinal photography (ETDRS photos) has been a gold standard for determining diabetic retinopathy (DR) severity. The Automated Retinal Imaging System (ARIS™, model 110, Visual Pathways, Inc., Prescott, AZ) acquires seven-sequential color stereoscopic digital images (ARIS images) by a semiautomated technician-run process generally corresponding to ETDRS photos. We assessed the correlation between a single semiautomated ARIS imaging session without any re-imaging and ETDRS photos performed by a certified photographer for the determination of DR severity. METHODS: Two independent masked readers graded mydriatic ARIS images and ETDRS photos. A third masked retinal specialist adjudicated discrepancies. Correlation between the two modalities was compared using weighted-κ statistics. RESULTS: We evaluated 211 eyes of 106 patients with varying levels of DR. Partially ungradable images were present in 3.4% of ETDRS photos versus 31.8% of ARIS images. Exact agreement and agreement within one level between ETDRS photos and ARIS images using only completely gradable image sets occurred in 69% (κ=0.81) and 90% of cases, respectively. Exact agreement for clinically significant macular edema was 92.1% (κ=0.59). There was 100% agreement for eyes with high-risk proliferative DR. Within one level of DR severity, 100% agreement occurred for the following: questionable nonproliferative DR (NPDR), moderate NPDR, and severe NPDR. CONCLUSIONS: Results suggest that semiautomated ARIS images compare favorably with ETDRS photos when full image sets can be obtained; however, partially ungradable image sets occurred almost 10 times more frequently with ARIS images than with ETDRS photos. In the two-thirds of cases where ARIS images can be utilized, ARIS can obtain retinal images comparable to ETDRS photos while requiring less highly trained personnel than generally needed for standard ETDRS photos.

Pages