Diabetic Eye Disease

Papavasileiou E, Davoudi S, Roohipoor R, Cho H, Kudrimoti S, Hancock H, Wilson JG, Andreoli C, Husain D, James M, Penman A, Chen CJ, Sobrin L. Association of serum lipid levels with retinal hard exudate area in African Americans with type 2 diabetes. Graefes Arch Clin Exp Ophthalmol 2017;255(3):509-517.Abstract
PURPOSE: Previous studies have yielded conflicting results regarding whether serum lipid levels are associated with retinal hard exudates in diabetic retinopathy. The majority of studies have assessed hard exudates only as a dichotomous trait (presence vs. absence) and included limited numbers of African Americans (AA). The purpose of this study was to determine if there are any associations between serum lipid levels and hard exudates in AA with type 2 diabetes (T2D). METHODS: 890 AA participants with T2D were enrolled from 5 sites. Macular fundus photographs were graded by masked ophthalmologist investigators. Hard exudate areas were measured using a semi-automated algorithm and ImageJ software. Multivariate regression models were used to determine the association between serum lipid levels and (1) presence of hard exudate and (2) area of hard exudate. RESULTS: Presence of hard exudates was associated with higher total cholesterol [(odds ratio (OR) = 1.08, 95 % confidence interval (CI) 1.03-1.13, P = 0.001)] and higher low-density lipoprotein (LDL) cholesterol (OR = 1.08, 95 % CI 1.03-1.14, P = 0.005) in models controlling for other risk factors. Hard exudate area was also associated with both higher total and LDL cholesterol levels (P = 0.04 and 0.01, respectively) in multivariate models controlling for other risk factors. CONCLUSIONS: Higher total and LDL cholesterol were associated with the presence of hard exudates and a greater hard exudate area in AA with T2D. This information can be used to counsel diabetic patients regarding the importance of lipid control to decrease the risk of macular hard exudates.
Jee D, Keum N, Kang S, Arroyo JG. Sleep and diabetic retinopathy. Acta Ophthalmol 2017;95(1):41-47.Abstract

PURPOSE: To investigate the association between sleep duration and diabetic retinopathy (DR). METHODS: A population-based cross-sectional study using a nation-wide, systemically stratified, multistage, clustered sampling method included a total of 1670 subjects aged ≥40 years with diabetes who participated in the Korean National Health and Nutrition Examination Survey during 2008-2012. All participants performed standardized interviews, including self-reported sleep duration, and comprehensive ophthalmic examinations. Seven standard retinal fundus photographs were obtained from both eyes after pupil dilatation. Diabetic retinopathy (DR) was graded and classified as any DR and vision-threatening DR. Participants were stratified into men and women. RESULTS: The mean sleep duration was 6.71 hr/day. In men, adjusted OR of any DR was 1.88 [95% confidence interval (OR), 1.01-3.59] in those with ≤5 hr sleep, and 2.19 (95% CI, 1.01-4.89) in those with ≥9 hr sleep, compared to in subjects with 6-8 hr sleep, after adjusting for potential confounders including age, body mass index (BMI), diabetes duration, fasting glucose level, haemoglobin A1c levels and hypertension. In women, however, no significant association between sleep duration and DR was found. The vision-threatening DR was not significantly associated with sleep duration in either men or women. CONCLUSIONS: Short and long sleep was associated with high prevalence of DR in men. Sleep deprivation may be involved in the pathogenesis of DR development.

Lammer J, Prager SG, Cheney MC, Ahmed A, Radwan SH, Burns SA, Silva PS, Sun JK. Cone Photoreceptor Irregularity on Adaptive Optics Scanning Laser Ophthalmoscopy Correlates With Severity of Diabetic Retinopathy and Macular Edema. Invest Ophthalmol Vis Sci 2016;57(15):6624-6632.Abstract

Purpose: To determine whether cone density, spacing, or regularity in eyes with and without diabetes (DM) as assessed by high-resolution adaptive optics scanning laser ophthalmoscopy (AOSLO) correlates with presence of diabetes, diabetic retinopathy (DR) severity, or presence of diabetic macular edema (DME). Methods: Participants with type 1 or 2 DM and healthy controls underwent AOSLO imaging of four macular regions. Cone assessment was performed by independent graders for cone density, packing factor (PF), nearest neighbor distance (NND), and Voronoi tile area (VTA). Regularity indices (mean/SD) of NND (RI-NND) and VTA (RI-VTA) were calculated. Results: Fifty-three eyes (53 subjects) were assessed. Mean ± SD age was 44 ± 12 years; 81% had DM (duration: 22 ± 13 years; glycated hemoglobin [HbA1c]: 8.0 ± 1.7%; DM type 1: 72%). No significant relationship was found between DM, HbA1c, or DR severity and cone density or spacing parameters. However, decreased regularity of cone arrangement in the macular quadrants was correlated with presence of DM (RI-NND: P = 0.04; RI-VTA: P = 0.04), increasing DR severity (RI-NND: P = 0.04), and presence of DME (RI-VTA: P = 0.04). Eyes with DME were associated with decreased density (P = 0.04), PF (P = 0.03), and RI-VTA (0.04). Conclusions: Although absolute cone density and spacing don't appear to change substantially in DM, decreased regularity of the cone arrangement is consistently associated with the presence of DM, increasing DR severity, and DME. Future AOSLO evaluation of cone regularity is warranted to determine whether these changes are correlated with, or predict, anatomic or functional deficits in patients with DM.

Horton MB, Silva PS, Cavallerano JD, Aiello LP. Operational Components of Telemedicine Programs for Diabetic Retinopathy. Curr Diab Rep 2016;16(12):128.Abstract

Diabetic retinopathy is a leading cause of new-onset vision loss worldwide. Treatments supported by large clinical trials are effective in preserving vision, but many persons do not receive timely diagnosis and treatment of diabetic retinopathy, which is typically asymptomatic when most treatable. Telemedicine evaluation to identify diabetic retinopathy has the potential to improve access to care and improve outcomes, but incomplete implementation of published standards creates a risk to program utility and sustainability. In a prior article, we reviewed the literature regarding the impact of imaging device, number and size of retinal images, pupil dilation, type of image grader, and diagnostic accuracy on telemedicine assessment for diabetic retinopathy. This article reviews the literature regarding the impact of automated image grading, cost effectiveness, program standards, and quality assurance (QA) on telemedicine assessment of diabetic retinopathy. Telemedicine assessment of diabetic retinopathy has the potential to preserve vision, but greater attention to development and implementation of standards is needed to better realize its potential.

Horton MB, Silva PS, Cavallerano JD, Aiello LP. Clinical Components of Telemedicine Programs for Diabetic Retinopathy. Curr Diab Rep 2016;16(12):129.Abstract

Diabetic retinopathy is a leading cause of new-onset vision loss worldwide. Treatments supported by large clinical trials are effective in preserving vision, but many persons do not receive timely diagnosis and treatment of diabetic retinopathy, which is typically asymptomatic when most treatable. Telemedicine evaluation to identify diabetic retinopathy has the potential to improve access to care, but there are no universal standards regarding camera choice or protocol for ocular telemedicine. We review the literature regarding the impact of imaging device, number and size of retinal images, pupil dilation, type of image grader, and diagnostic accuracy on telemedicine assessment for diabetic retinopathy. Telemedicine assessment of diabetic retinopathy has the potential to preserve vision, but further development of telemedicine specific technology and standardization of operations are needed to better realize its potential.

Song BJ, Aiello LP, Pasquale LR. Presence and Risk Factors for Glaucoma in Patients with Diabetes. Curr Diab Rep 2016;16(12):124.Abstract

Diabetes mellitus represents a growing international public health issue with a near quadrupling in its worldwide prevalence since 1980. Though it has many known microvascular complications, vision loss from diabetic retinopathy is one of the most devastating for affected individuals. In addition, there is increasing evidence to suggest that diabetic patients have a greater risk for glaucoma as well. Though the pathophysiology of glaucoma is not completely understood, both diabetes and glaucoma appear to share some common risk factors and pathophysiologic similarities with studies also reporting that the presence of diabetes and elevated fasting glucose levels are associated with elevated intraocular pressure-the primary risk factor for glaucomatous optic neuropathy. While no study has completely addressed the possibility of detection bias, most recent epidemiologic evidence suggests that diabetic populations are likely enriched with glaucoma patients. As the association between diabetes and glaucoma becomes better defined, routine evaluation for glaucoma in diabetic patients, particularly in the telemedicine setting, may become a reasonable consideration to reduce the risk of vision loss in these patients.

Moran EP, Wang Z, Chen J, Sapieha P, Smith LEH, Ma J-X. Neurovascular cross talk in diabetic retinopathy: Pathophysiological roles and therapeutic implications. Am J Physiol Heart Circ Physiol 2016;311(3):H738-49.Abstract

Diabetic retinopathy (DR) is the leading cause of blindness in the working-age population in developed countries, and its prevalence will increase as the global incidence of diabetes grows exponentially. DR begins with an early nonproliferative stage in which retinal blood vessels and neurons degenerate as a consequence of chronic hyperglycemia, resulting in vasoregression and persistent retinal ischemia, metabolic disequilibrium, and inflammation. This is conducive to overcompensatory pathological neovascularization associated with advanced proliferative DR. Although DR is considered a microvascular complication, the retinal microvasculature is intimately associated with and governed by neurons and glia; neurodegeneration, neuroinflammation, and dysregulation of neurovascular cross talk are responsible in part for vascular abnormalities in both early nonproliferative DR and advanced proliferative DR. Neuronal activity directly regulates microvascular dilation and blood flow in the process of neurovascular coupling. Retinal neurons also secrete guidance cues in response to injury, ischemia, or metabolic stress that may either promote or suppress vascular outgrowth, either alleviating or exacerbating DR, contingent on the stage of disease and retinal microenvironment. Neurodegeneration, impaired neurovascular coupling, and dysregulation of neuronal guidance cues are key events in the pathogenesis of DR, and correcting these events may prevent or delay development of advanced DR. The review discusses the mechanisms of neurovascular cross talk and its dysregulation in DR, and their potential therapeutic implications.

Davoudi S, Papavasileiou E, Roohipoor R, Cho H, Kudrimoti S, Hancock H, Hoadley S, Andreoli C, Husain D, James M, Penman A, Chen CJ, Sobrin L. OPTICAL COHERENCE TOMOGRAPHY CHARACTERISTICS OF MACULAR EDEMA AND HARD EXUDATES AND THEIR ASSOCIATION WITH LIPID SERUM LEVELS IN TYPE 2 DIABETES. Retina 2016;36(9):1622-9.Abstract

PURPOSE: To determine whether hyperreflective foci (HF) and macular thickness on spectral domain ocular coherence tomography are associated with lipid levels in patients with Type 2 diabetes. METHODS: Two hundred and thirty-eight participants from four sites had fundus photographs and spectral domain ocular coherence tomography images graded for hard exudates and HF, respectively. Regression models were used to determine the association between serum lipid levels and 1) presence of HF and hard exudates and 2) central subfield macular thickness, central subfield macular volume, and total macular volume. RESULTS: All patients with hard exudates on fundus photographs had corresponding HF on spectral domain ocular coherence tomography, but 57% of patients with HF on optical coherence tomography did not have hard exudates detected in their fundus photographs. Presence of HF was associated with higher total cholesterol (odds ratio = 1.13, 95% confidence interval = 1.01-1.27, P = 0.03) and higher low-density lipoprotein levels (odds ratio = 1.17, 95% confidence interval = 1.02-1.35, P = 0.02) in models adjusting for other risk factors. The total macular volume was also associated with higher total cholesterol (P = 0.009) and triglyceride (P = 0.02) levels after adjusting for other risk factors. CONCLUSION: Higher total and low-density lipoprotein cholesterol were associated with presence of HF on spectral domain ocular coherence tomography. Total macular volume was associated with higher total cholesterol and triglyceride levels.

Kim CB, D'Amore PA, Connor KM. Revisiting the mouse model of oxygen-induced retinopathy. Eye Brain 2016;8:67-79.Abstract

Abnormal blood vessel growth in the retina is a hallmark of many retinal diseases, such as retinopathy of prematurity (ROP), proliferative diabetic retinopathy, and the wet form of age-related macular degeneration. In particular, ROP has been an important health concern for physicians since the advent of routine supplemental oxygen therapy for premature neonates more than 70 years ago. Since then, researchers have explored several animal models to better understand ROP and retinal vascular development. Of these models, the mouse model of oxygen-induced retinopathy (OIR) has become the most widely used, and has played a pivotal role in our understanding of retinal angiogenesis and ocular immunology, as well as in the development of groundbreaking therapeutics such as anti-vascular endothelial growth factor injections for wet age-related macular degeneration. Numerous refinements to the model have been made since its inception in the 1950s, and technological advancements have expanded the use of the model across multiple scientific fields. In this review, we explore the historical developments that have led to the mouse OIR model utilized today, essential concepts of OIR, limitations of the model, and a representative selection of key findings from OIR, with particular emphasis on current research progress.

Pan J, Liu S, Farkas M, Consugar M, Zack DJ, Kozak I, Arevalo FJ, Pierce E, Qian J, Al Kahtani E. Serum molecular signature for proliferative diabetic retinopathy in Saudi patients with type 2 diabetes. Mol Vis 2016;22:636-45.Abstract

PURPOSE: The risk of vision loss from proliferative diabetic retinopathy (PDR) can be reduced with timely detection and treatment. We aimed to identify serum molecular signatures that might help in the early detection of PDR in patients with diabetes. METHODS: A total of 40 patients with diabetes were recruited at King Khaled Eye Specialist Hospital in Riyadh, Saudi Arabia, 20 with extensive PDR and 20 with mild non-proliferative diabetic retinopathy (NPDR). The two groups were matched in age, gender, and known duration of diabetes. We examined the whole genome transcriptome of blood samples from the patients using RNA sequencing. We built a model using a support vector machine (SVM) approach to identify gene combinations that can classify the two groups. RESULTS: Differentially expressed genes were calculated from a total of 25,500 genes. Six genes (CCDC144NL, DYX1C1, KCNH3, LOC100506476, LOC285847, and ZNF80) were selected from the top 26 differentially expressed genes, and a combinatorial molecular signature was built based on the expression of the six genes. The mean area under receiver operating characteristic (ROC) curve was 0.978 in the cross validation. The corresponding sensitivity and specificity were 91.7% and 91.5%, respectively. CONCLUSIONS: Our preliminary study defined a combinatorial molecular signature that may be useful as a potential biomarker for early detection of proliferative diabetic retinopathy in patients with diabetes. A larger-scale study with an independent cohort of samples is necessary to validate and expand these findings.

Tecilazich F, Feke GT, Mazzantini S, Sobrin L, Lorenzi M. Defective Myogenic Response of Retinal Vessels Is Associated With Accelerated Onset of Retinopathy in Type 1 Diabetic Individuals. Invest Ophthalmol Vis Sci 2016;57(4):1523-9.Abstract

PURPOSE: We seek to identify pathogenic mechanisms for diabetic retinopathy that can become therapeutic targets beyond hyperglycemia and hypertension. We investigated if a defective myogenic response of retinal arteries to increased perfusion pressure, which exposes capillaries to increased pressure and flow, is associated with the onset of clinical retinopathy. METHODS: We examined prospectively the incidence of retinopathy in type 1 diabetic individuals tested 4 years earlier for the retinal arterial myogenic response, and in a cross-sectional study the prevalence of defective myogenic response in type 1 patients who had diabetic retinopathy. Among these, we contrasted early-onset (after 15 ± 2 years of diabetes, E-DR; n = 5) to late-onset (after 26 ± 3 years of diabetes, L-DR; n = 7) retinopathy. We measured the myogenic response using a laser Doppler blood flowmeter after a change in posture from sitting to reclining, which increases retinal perfusion pressure. RESULTS: Five of seven participants who 4 years prior had a defective myogenic response had now developed clinical retinopathy; as compared with only one of six participants who 4 years prior had a normal response (P = 0.10). In the cross-sectional study, all participants had normal retinal hemodynamics at steady state. In response to the postural change, only the E-DR group showed defective myogenic response (P = 0.005 versus controls, P = 0.02 versus L-DR) and abnormally high retinal blood flow (P = 0.016 versus controls). CONCLUSIONS: In type 1 diabetic patients, a defective myogenic response of retinal arteries to pressure is not required for the development of clinical retinopathy, but is prominently associated with an accelerated onset of retinopathy.

Hymowitz MB, Chang D, Feinberg EB, Roy S. Increased Intraocular Pressure and Hyperglycemic Level in Diabetic Patients. PLoS One 2016;11(3):e0151833.Abstract

PURPOSE: To determine whether hyperglycemic levels as determined from high hemoglobin A1c (HbA1c) levels influence intraocular pressure (IOP) in patients with non-proliferative diabetic retinopathy (NPDR). METHODS: A retrospective chart review was performed on subjects with a diagnosis of NPDR and a corresponding HbA1c level measured within 90 days before or after an IOP measurement over a two-year period. Exclusion criteria included a diagnosis of glaucoma or treatment with IOP lowering medications or oral or topical steroids. RESULTS: Using 14.5mmHg as a baseline mean value for IOP, 42 subjects had an IOP < 14.5mmHg and mean HbA1c of 8.1±1.1, while 72 subjects had an IOP ≥ 14.5mmHg and a mean HbA1c of 9.0±2.1. Although there was an overlap in the confidence intervals, a significant difference (P = 0.01) in the mean HbA1c level was observed in regression analysis between the two groups. Importantly, diabetic subjects with elevated HbA1c levels rarely (<1%) exhibited reduced IOP levels. CONCLUSIONS: Diabetic subjects with elevated HbA1c levels exhibited significantly higher IOPs compared to those with lower HbA1c levels. Findings from this study indicate an association between hyperglycemia and elevated IOP and that poor glycemic control may contribute to increased IOP levels in long-term diabetic patients.

Penman A, Hancock H, Papavasileiou E, James M, Idowu O, Riche DM, Fernandez M, Brauner S, Smith SO, Hoadley S, Richardson C, Vazquez V, Chi C, Andreoli C, Husain D, Chen CJ, Sobrin L. Risk Factors for Proliferative Diabetic Retinopathy in African Americans with Type 2 Diabetes. Ophthalmic Epidemiol 2016;23(2):88-93.Abstract

PURPOSE: To assess personal and demographic risk factors for proliferative diabetic retinopathy in African Americans with type 2 diabetes. METHODS: In this prospective, non-interventional, cross-sectional case-control study, 380 African Americans with type 2 diabetes were enrolled. Participants were recruited prospectively and had to have either: (1) absence of diabetic retinopathy after ≥10 years of type 2 diabetes, or (2) presence of proliferative diabetic retinopathy when enrolled. Dilated, 7-field fundus photographs were graded using the Early Treatment Diabetic Retinopathy Study scale. Covariates including hemoglobin A1C (HbA1C), blood pressure, height, weight and waist circumference were collected prospectively. Multivariate regression models adjusted for age, sex and site were constructed to assess associations between risk factors and proliferative diabetic retinopathy. RESULTS: Proliferative diabetic retinopathy was associated with longer duration of diabetes (odds ratio, OR, 1.62, p < 0.001), higher systolic blood pressure (OR 1.65, p < 0.001) and insulin use (OR 6.65, p < 0.001) in the multivariate regression analysis. HbA1C was associated with proliferative diabetic retinopathy in the univariate analysis (OR 1.31, p = 0.002) but was no longer significant in the multivariate analysis. CONCLUSIONS: In this case-control study of African Americans with type 2 diabetes, duration of diabetes, systolic hypertension and insulin use were strong risk factors for the development of proliferative diabetic retinopathy. Interestingly, HbA1C did not confer additional risk in this cohort.

Silva PS, Horton MB, Clary D, Lewis DG, Sun JK, Cavallerano JD, Aiello LP. Identification of Diabetic Retinopathy and Ungradable Image Rate with Ultrawide Field Imaging in a National Teleophthalmology Program. Ophthalmology 2016;123(6):1360-7.Abstract

PURPOSE: To compare diabetic retinopathy (DR) identification and ungradable image rates between nonmydriatic ultrawide field (UWF) imaging and nonmydriatic multifield fundus photography (NMFP) in a large multistate population-based DR teleophthalmology program. DESIGN: Multiple-site, nonrandomized, consecutive, cross-sectional, retrospective, uncontrolled imaging device evaluation. PARTICIPANTS: Thirty-five thousand fifty-two eyes (17 526 patients) imaged using NMFP and 16 218 eyes (8109 patients) imaged using UWF imaging. METHODS: All patients undergoing Joslin Vision Network (JVN) imaging with either NMFP or UWF imaging from May 1, 2014, through August 30, 2015, within the Indian Health Service-JVN program, which serves American Indian and Alaska Native communities at 97 sites across 25 states, were evaluated. All retinal images were graded using a standardized validated protocol in a centralized reading center. MAIN OUTCOME MEASURES: Ungradable rate for DR and diabetic macular edema (DME). RESULTS: The ungradable rate per patient for DR and DME was significantly lower with UWF imaging compared with NMFP (DR, 2.8% vs. 26.9% [P < 0.0001]; DME, 3.8% vs. 26.2% [P < 0.0001]). Identification of eyes with either DR or referable DR (moderate nonproliferative DR or DME or worse) was increased using UWF imaging from 11.7% to 24.2% (P < 0.0001) and from 6.2% to 13.6% (P < 0.0001), respectively. In eyes with DR imaged with UWF imaging (n = 3926 eyes of 2402 patients), the presence of predominantly peripheral lesions suggested a more severe level of DR in 7.2% of eyes (9.6% of patients). CONCLUSIONS: In a large, widely distributed DR ocular telehealth program, as compared with NMFP, nonmydriatic UWF imaging reduced the number of ungradable eyes by 81%, increased the identification of DR nearly 2-fold, and identified peripheral lesions suggesting more severe DR in almost 10% of patients, thus demonstrating significant benefits of this imaging method for large DR teleophthalmology programs.

Pages