Imaging and Diagnostics

Choudhury A, Reyes N, Galor A, Mehra D, Felix E, Moulton EA. Clinical Neuroimaging of Photophobia in Individuals With Chronic Ocular Surface Pain. Am J Ophthalmol 2023;246:20-30.Abstract
PURPOSE: To examine neural mechanisms underlying photophobia in individuals with chronic ocular surface pain by using functional magnetic resonance imaging (fMRI). DESIGN: Cross-sectional case/control analysis. METHODS: A total of 16 individuals from the Miami Veterans Affairs eye clinic underwent comprehensive ocular surface evaluations and were surveyed for ocular surface symptoms. Case patients included patients who reported chronic ocular surface pain symptoms and light sensitivity at least most of the time over 1 week. Controls included persons without chronic ocular surface pain who reported no or minimal light sensitivity. All patients viewed light stimuli during 2 fMRI scans, one before and one after topical anesthetic instillation, and rated their level of pain intensity to the stimulus at the end of each scan. Areas of brain activation in response to light stimuli presentation were correlated with pain responses and examined post- vs pre-anesthesia. RESULTS: Case patients (n = 8) reported higher pain intensity ratings than controls (n = 8) in response to light stimuli during fMRI. Case patient ratings correlated more with light-evoked activation in pain-related areas within the trigeminal brainstem, primary somatosensory cortex (S1), anterior mid-cingulate cortex (aMCC), and insula than in controls. Topical anesthesia led to varying responses in pain ratings among case patients as well as decreased light-evoked activation in S1 and aMCC. CONCLUSIONS: The trigeminal nociceptive system may contribute to photophobia in individuals with chronic ocular surface pain. We demonstrate modulation of cortical structures in this pathway with topically applied anesthetic to the eyes. Further understanding of modulatory interactions that govern ocular surface pain and photophobia is critical for developing effective, precision-based therapies.
Agarwal A, Singh RB, Erckens RJ, Berendschot TTJM, Webers CAB. Quantitative Analysis of the Choroidal Vascularity in Eyes with Uveitis Using Optical Coherence Tomography Angiography: A Systematic Review. Ocul Immunol Inflamm 2023;31(9):1792-1803.Abstract
PURPOSE: The purpose of this systematic review is to identify techniques used for quantification of choriocapillaris (CC) flow in eyes with uveitis using optical coherence tomography angiography (OCTA), report reliability and level of correlation with techniques such as indocyanine green angiography (ICGA). METHODS: A systematic search of several databases was done. The studies were analyzed for techniques of measurement, reliability, and correlation with other modalities. Risk of bias assessment was performed. RESULTS: Thirteen studies were included. CC vessel density (7 studies) and flow deficit area (4 studies) were the most used indices. There was significant heterogeneity in the studies due to differences in the scan protocol, thresholding strategy, and analysis. Comparison with ICGA was performed by only one study, and reliability indices were reported by only two studies. CONCLUSION: OCTA is a useful tool to measure the CC vascularity in eyes with uveitis. However, standardized acquisition and analysis protocols are needed.
Singh RB, Perepelkina T, Testi I, Young BK, Mirza T, Invernizzi A, Biswas J, Agarwal A. Imaging-based Assessment of Choriocapillaris: A Comprehensive Review. Semin Ophthalmol 2023;38(5):405-426.Abstract
PURPOSE: Over the past two decades, advancements in imaging modalities have significantly evolved the diagnosis and management of retinal diseases. Through these novel platforms, we have developed a deeper understanding of the anatomy of the choroidal vasculature and the choriocapillaris. The recently developed tools such as optical coherence tomography (OCT) and OCT angiography (OCTA) have helped elucidate the pathological mechanisms of several posterior segment diseases. In this review, we have explained the anatomy of the choriocapillaris and its close relationship to the outer retina and retinal pigment epithelium. METHODS: A comprehensive search of medical literature was performed through the Medline/PubMed database using search terms: choriocapillaris, choroid, quantification, biomarkers, diabetic retinopathy, age-related macular degeneration, choroidal blood flow, mean blur rate, flow deficit, optical coherence tomography, optical coherence tomography angiography, fluorescein angiography, indocyanine green angiography, OCTA, Doppler imaging, uveitis, choroiditis, white dot syndrome, tubercular serpiginous-like choroiditis, choroidal granuloma, pachychoroid, toxoplasmosis, central serous chorioretinopathy, multifocal choroiditis, choroidal neovascularization, choroidal thickness, choroidal vascularity index, choroidal vascular density, and choroidal blood supply. The search terms were used either independently or combined with choriocapillaris/choroid. RESULTS: The imaging techniques which are used to qualitatively and quantitatively analyze choriocapillaris are described. The pathological alterations in the choriocapillaris in an array of conditions such as diabetes mellitus, age-related macular degeneration, pachychoroid spectrum of diseases, and inflammatory disorders have been comprehensively reviewed. The future directions in the study of choriocapillaris have also been discussed. CONCLUSION: The development of imaging tools such as OCT and OCTA has dramatically improved the assessment of choriocapillaris in health and disease. The choriocapillaris can be delineated from the stromal choroid using the OCT and quantified by manual or automated methods. However, these techniques have inherent limitations due to the lack of an anatomical distinction between the choriocapillaris and the stromal choroid, which can be overcome with the use of predefined segmentation slabs on OCT and OCTA. These segmentation slabs help in standardizing the choriocapillaris imaging and obtain repeatable measurements in various conditions such as diabetic retinopathy, age-related macular degeneration, pachychoroid spectrum, and ocular inflammations. Additionally, Doppler imaging has also been effectively used to evaluate the choroidal blood flow and quantifying the choriocapillaris and establishing its role in the pathogenesis of various retinochoroidal diseases. As tremendous technological advancements such as wide-field and ultra-wide field imaging take place, there will be a significant improvement in the ease and accuracy of quantifying the choriocapillaris.
Joseph S, Rajan RP, Sundar B, Venkatachalam S, Kempen JH, Kim R. Validation of diagnostic accuracy of retinal image grading by trained non-ophthalmologist grader for detecting diabetic retinopathy and diabetic macular edema. Eye (Lond) 2023;37(8):1577-1582.Abstract
PURPOSE: To validate the fundus image grading results by a trained grader (Non-ophthalmologist) and an ophthalmologist grader for detecting diabetic retinopathy (DR) and diabetic macular oedema (DMO) against fundus examination by a retina specialist (gold standard). METHODS: A prospective diagnostic accuracy study was conducted using 2002 non-mydriatic colour fundus images from 1001 patients aged ≥40 years. Using the Aravind Diabetic Retinopathy Evaluation Software (ADRES) images were graded by both a trained non-ophthalmologist grader (grader-1) and an ophthalmologist (grader-2). Sensitivity, specificity, positive predictive value and negative predictive value were calculated for grader-1 and grader-2 against the grading results by an independent retina specialist who performed dilated fundus examination for every study participant. RESULTS: Out of 1001 patients included, 42% were women and the mean ± (SD) age was 55.8 (8.39) years. For moderate or worse DR, the sensitivity and specificity for grading by grader-1 with respect to the gold standard was 66.9% and 91.0% respectively and the same for the ophthalmologist was 83.6% and 80.3% respectively. For referable DMO, grader-1 and grader-2 had a sensitivity of 74.6% and 85.6% respectively and a specificity of 83.7% and 79.8% respectively. CONCLUSIONS: Our results demonstrate good level of accuracy for the fundus image grading performed by a trained non-ophthalmologist which was comparable with the grading by an ophthalmologist. Engaging trained non-ophthalmologists potentially can enhance the efficiency of DR diagnosis using fundus images. Further study with multiple non-ophthalmologist graders is needed to verify the results and strategies to improve agreement for DMO diagnosis are needed.
Moon JY, Garg I, Cui Y, Katz R, Zhu Y, Le R, Lu Y, Lu ES, Ludwig CA, Elze T, Wu DM, Eliott D, Miller JW, Kim LA, Husain D, Vavvas DG, Miller JB. Wide-field swept-source optical coherence tomography angiography in the assessment of retinal microvasculature and choroidal thickness in patients with myopia. Br J Ophthalmol 2023;107(1):102-108.Abstract
BACKGROUND/AIMS: Pathological myopia (PM) is a leading cause of blindness worldwide. We aimed to evaluate microvascular and chorioretinal changes in different stages of myopia with wide-field (WF) swept-source (SS) optical coherence tomography angiography (OCTA). METHODS: This prospective cross-sectional observational study included 186 eyes of 122 patients who had undergone imaging between November 2018 and October 2020. Vessel density (VD) and vessel skeletonised density (VSD) of superficial capillary plexus, deep capillary plexus and whole retina, as well as foveal avascular zone parameters, retinal thickness (RT) and choroidal thickness (CT), were calculated. RESULTS: This study evaluated 75 eyes of 48 patients with high myopia (HM), 43 eyes of 31 patients with mild to moderate myopia and 68 eyes of 53 age-matched controls. Controlling for age and the presence of systemic hypertension, we found that HM was associated with decrease in VD and VSD in all layers on 12×12 mm² scans. Furthermore, HM was associated with a VD and VSD decrease in every Early Treatment Diabetic Retinopathy Study grid, with a larger decrease temporally (βVD=-0.39, βVSD=-10.25, p<0.01). HM was associated with decreased RT and CT. Reduction in RT was outside the macular region, while reduction in CT was in the macular region. CONCLUSION: Using WF SS-OCTA, we identified reduction in microvasculature and structural changes associated with myopia. Decrease in VD and VSD was greater in the temporal quadrant, and reductions in RT and CT were uneven across the retina. Further work may help identify risk factors for the progression of PM and associated vision-threatening complications.
Houston KE, Paschalis EI. Feasibility of Magnetic Levator Prosthesis Frame Customization Using Craniofacial Scans and 3-D Printing. Transl Vis Sci Technol 2022;11(10):34.Abstract
Purpose: To determine the feasibility of a custom frame generation approach for nonsurgical management of severe blepharoptosis with the magnetic levator prosthesis (MLP). Methods: Participants (n = 8) with severe blepharoptosis (obscuring the visual axis) in one or both eyes who had previously been using a non-custom MLP had a craniofacial scan with a smartphone app to generate a custom MLP frame. A magnetic adhesive was attached to the affected eyelid. The custom MLP frame held a cylindrical magnet near the eyebrow above the affected eyelid, suspending it in the magnetic field while still allowing blinking. The spectacle magnet could be rotated manually, providing adjustable force via angular translation of the magnetic field. Fitting success and comfort were recorded, and interpalpebral fissure (IPF) was measured from video frames after 20 minutes in-office and one-week at-home use. Preference was documented, custom versus non-custom. Results: Overall, 88% of patients (7/8) were successfully fitted with a median 9/10 comfort (interquartile 7-10) and median ptosis improvement of 2.3 mm (1.3-5.0); P = 0.01). Exact binomial testing suggested, with 80% power, that the true population success rate was significantly greater than 45% (P = 0.05). Five participants took the custom MLP home for one week, with only one case of mild conjunctival redness which resolved without treatment. Highest to lowest force modulation resulted in a marginally significant median IPF adjustment of 1.5 mm (0.8 to 2.7; P = 0.06). All preferred the custom frame. Conclusions: The three-dimensional custom MLP frame generation approach using a smartphone app-based craniofacial scan is a feasible approach for clinical deployment of the MLP. Translational Relevance: First demonstration of customized frame generation for the MLP.
Garg I, Uwakwe C, Le R, Lu ES, Cui Y, Wai KM, Katz R, Zhu Y, Moon JY, Li CY, Laíns I, Eliott D, Elze T, Kim LA, Wu DM, Miller JW, Husain D, Vavvas DG, Miller JB. Nonperfusion Area and Other Vascular Metrics by Wider Field Swept-Source OCT Angiography as Biomarkers of Diabetic Retinopathy Severity. Ophthalmol Sci 2022;2(2)Abstract
Purpose: To study the wider field swept-source optical coherence tomography angiography (WF SS-OCTA) metrics, especially non-perfusion area (NPA), in the diagnosing and staging of DR. Design: Cross-sectional observational study (November 2018-September 2020). Participants: 473 eyes of 286 patients (69 eyes of 49 control patients and 404 eyes of 237 diabetic patients). Methods: We imaged using 6mm×6mm and 12mm×12mm angiograms on WF SS-OCTA. Images were analyzed using the ARI Network and FIJI ImageJ. Mixed effects multiple regression models and receiver operator characteristic analysis was used for statistical analyses. Main Outcome Measures: Quantitative metrics such as vessel density (VD); vessel skeletonized density (VSD); foveal avascular zone (FAZ) area, circularity, and perimeter; and NPA in DR and their relative performance for its diagnosis and grading. Results: Among patients with diabetes (median age 59 years), 51 eyes had no DR, 185 eyes (88 mild, 97 moderate-severe) had non-proliferative DR (NPDR); and 168 eyes had proliferative DR (PDR). Trend analysis revealed a progressive decline in superficial capillary plexus (SCP) VD and VSD, and increased NPA with increasing DR severity. Additionally, there was a significant reduction in deep capillary plexus (DCP) VD and VSD in early DR (mild NPDR), but the progressive reduction in advanced DR stages was not significant. NPA was the best parameter to diagnose DR (AUC:0.96), whereas all parameters combined on both angiograms efficiently diagnosed (AUC:0.97) and differentiated between DR stages (AUC range:0.83-0.97). The presence of diabetic macular edema was associated with reduced SCP and DCP VD and VSD within mild NPDR eyes, whereas an increased VD and VSD in SCP among moderate-severe NPDR group. Conclusions: Our work highlights the importance of NPA, which can be more readily and easily measured with WF SS-OCTA compared to fluorescein angiography. It is additionally quick and non-invasive, and hence can be an important adjunct for DR diagnosis and management. In our study, a combination of all OCTA metrics on both 6mm×6mm and 12mm×12mm angiograms had the best diagnostic accuracy for DR and its severity. Further longitudinal studies are needed to assess NPA as a biomarker for progression or regression of DR severity.
Zeng R, Garg I, Bannai D, Kasetty M, Katz R, Park J, Lizano P, Miller JB. Retinal microvasculature and vasoreactivity changes in hypertension using optical coherence tomography-angiography. Graefes Arch Clin Exp Ophthalmol 2022;260(11):3505-3515.Abstract
PURPOSE: To evaluate the retinal vasculature and vasoreactivity of patients with hypertension (HTN) using spectral domain optical coherence tomography angiography (SD-OCTA). METHODS: Patients with and without a diagnosis of HTN were included in this cross-sectional observational study. All eyes were imaged with SD-OCTA using 3 mm × 3 mm and 6 mm × 6 mm centered on both the fovea and optic disk. A second 6 mm × 6 mm scan was taken after a 30 s breath-hold. Vessel density (VD), vessel skeletonized density (VSD), and fractal dimension (FD) were calculated using customized MATLAB scripts. Vessel diameter index (VDI) was obtained by taking the ratio of VD to VSD. Vasoreactivity was measured by subtracting the VD or VSD before and after breath-hold (∆VD, ∆VSD). RESULTS: Twenty-three eyes with HTN (17 patients) and 17 control eyes (15 patients) were included. In the 6 mm × 6 mm angiogram centered on fovea, the superficial capillary plexus (SCP) VD (ß =  - 0.029, p = 0.012), VSD (ß =  - 0.004, p = 0.043) and the choriocapillaris VD (ß =  - 0.021, p = 0.030) were significantly decreased in HTN compared to control eyes. Similarly, FD was decreased in both the SCP (ß =  - 0.012, p = 0.013) and choriocapillaris (ß =  - 0.009, p = 0.030). In the 3 mm × 3 mm angiogram centered on optic disk, SCP VDI (ß =  - 0.364, p = 0.034) was decreased. ∆VD and ∆VSD were both reduced in the DCP (ß =  - 0.034, p = 0.032; ß =  - 0.013, p = 0.043) and ∆VSD was elevated in the choriocapillaris of HTN eyes (ß = 0.004, p = 0.032). CONCLUSIONS: The study used SD-OCTA to show significant differences in the retinal vasculature of hypertensive patients. It was also the first to demonstrate the potential of OCT-A to investigate retinal vascular reactivity in patients with HTN.
Salongcay RP, Aquino LAC, Salva CMG, Saunar AV, Alog GP, Sun JK, Peto T, Silva PS. Comparison of Handheld Retinal Imaging with ETDRS 7-Standard Field Photography for Diabetic Retinopathy and Diabetic Macular Edema. Ophthalmol Retina 2022;6(7):548-556.Abstract
PURPOSE: To compare nonmydriatic (NM) and mydriatic (MD) handheld retinal imaging with standard ETDRS 7-field color fundus photography (ETDRS photographs) for the assessment of diabetic retinopathy (DR) and diabetic macular edema (DME). DESIGN: Prospective, comparative, instrument validation study. SUBJECTS: A total of 225 eyes from 116 patients with diabetes mellitus. METHODS: Following a standardized protocol, NM and MD images were acquired using handheld retinal cameras (NM images: Aurora, Smartscope, and RetinaVue-700; MD images: Aurora, Smartscope, RetinaVue-700, and iNview) and dilated ETDRS photographs. Grading was performed at a centralized reading center using the International Clinical Classification for DR and DME. Kappa statistics (simple [K], weighted [Kw]) assessed the level of agreement for DR and DME. Sensitivity and specificity were calculated for any DR, referable DR (refDR), and vision-threatening DR (vtDR). MAIN OUTCOME MEASURES: Agreement for DR and DME; sensitivity and specificity for any DR, refDR, and vtDR; ungradable rates. RESULTS: Severity by ETDRS photographs: no DR, 33.3%; mild nonproliferative DR, 20.4%; moderate DR, 14.2%; severe DR, 11.6%; proliferative DR, 20.4%; no DME, 68.0%; DME, 9.3%; non-center involving clinically significant DME, 4.9%; center-involving clinically significant DME, 12.4%; and ungradable, 5.3%. For NM handheld retinal imaging, Kw was 0.70 to 0.73 for DR and 0.76 to 0.83 for DME. For MD handheld retinal imaging, Kw was 0.68 to 0.75 for DR and 0.77 to 0.91 for DME. Thresholds for sensitivity (0.80) and specificity (0.95) were met by NM images acquired using Smartscope and MD images acquired using Aurora and RetinaVue-700 cameras for any DR and by MD images acquired using Aurora and RetinaVue-700 cameras for refDR. Thresholds for sensitivity and specificity were met by MD images acquired using Aurora and RetinaVue-700 for DME. Nonmydriatic and MD ungradable rates for DR were 15.1% to 38.3% and 0% to 33.8%, respectively. CONCLUSIONS: Following standardized protocols, NM and MD handheld retinal imaging devices have substantial agreement levels for DR and DME. With mydriasis, not all handheld retinal imaging devices meet standards for sensitivity and specificity in identifying any DR and refDR. None of the handheld devices met the established 95% specificity for vtDR, suggesting that lower referral thresholds should be used if handheld devices must be utilized. When using handheld devices, the ungradable rate is significantly reduced with mydriasis and DME sensitivity thresholds are only achieved following dilation.
Naninck T, Kahlaoui N, Lemaitre J, Maisonnasse P, De Mori A, Pascal Q, Contreras V, Marlin R, Relouzat F, Delache B, Hérate C, Aldon Y, van Gils M, Zabaleta N, Tsong Fang RH, Bosquet N, Sanders RW, Vandenberghe LH, Chapon C, Le Grand R. Computed tomography and [18F]-FDG PET imaging provide additional readouts for COVID-19 pathogenesis and therapies evaluation in non-human primates. iScience 2022;25(4):104101.Abstract
Non-human primates (NHPs) are particularly relevant as preclinical models for SARS-CoV-2 infection and nuclear imaging may represent a valuable tool for monitoring infection in this species. We investigated the benefit of computed X-ray tomography (CT) and [18F]-FDG positron emission tomography (PET) to monitor the early phase of the disease in a large cohort (n = 76) of SARS-CoV-2 infected macaques. Following infection, animals showed mild COVID-19 symptoms including typical lung lesions. CT scores at the acute phase reflect the heterogeneity of lung burden following infection. Moreover, [18F]-FDG PET revealed that FDG uptake was significantly higher in the lungs, nasal cavities, lung-draining lymph nodes, and spleen of NHPs by 5 days postinfection compared to pre-infection levels, indicating early local inflammation. The comparison of CT and PET data from previous COVID-19 treatments or vaccines we tested in NHP, to this large cohort of untreated animals demonstrated the value of in vivo imaging in preclinical trials.

Pages