Imaging and Diagnostics

Cui Y, Zhu Y, Wang JC, Lu Y, Zeng R, Katz R, Vingopoulos F, Le R, Laíns I, Wu DM, Eliott D, Vavvas DG, Husain D, Miller JW, Kim LA, Miller JB. Comparison of widefield swept-source optical coherence tomography angiography with ultra-widefield colour fundus photography and fluorescein angiography for detection of lesions in diabetic retinopathy. Br J Ophthalmol 2021;105(4):577-581.Abstract
AIMS: To compare widefield swept-source optical coherence tomography angiography (WF SS-OCTA) with ultra-widefield colour fundus photography (UWF CFP) and fluorescein angiography (UWF FA) for detecting diabetic retinopathy (DR) lesions. METHODS: This prospective, observational study was conducted at Massachusetts Eye and Ear from December 2018 to October 2019. Proliferative DR, non-proliferative DR and diabetic patients with no DR were included. All patients were imaged with a WF SS-OCTA using a Montage 15×15 mm scan. UWF CFP and UWF FA were taken by a 200°, single capture retinal imaging system. Images were independently evaluated for the presence or absence of DR lesions including microaneurysms (MAs), intraretinal microvascular abnormalities (IRMAs), neovascularisation elsewhere (NVE), neovascularisation of the optic disc (NVD) and non-perfusion areas (NPAs). All statistical analyses were performed using SPSS V.25.0. RESULTS: One hundred and fifty-two eyes of 101 participants were included in the study. When compared with UWF CFP, WF SS-OCTA was found to be superior in detecting IRMAs (p<0.001) and NVE/NVD (p=0.007). The detection rates of MAs, IRMAs, NVE/NVD and NPAs in WF SS-OCTA were comparable with UWF FA images (p>0.05). Furthermore, when we compared WF SS-OCTA plus UWF CFP with UWF FA, the detection rates of MAs, IRMAs, NVE/NVD and NPAs were identical (p>0.005). Agreement (κ=0.916) between OCTA and FA in classifying DR was excellent. CONCLUSION: WF SS-OCTA is useful for identification of DR lesions. WF SS-OCTA plus UWF CFP may offer a less invasive alternative to FA for DR diagnosis.
Kras A, Celi LA, Miller JB. Accelerating ophthalmic artificial intelligence research: the role of an open access data repository. Curr Opin Ophthalmol 2020;31(5):337-350.Abstract
PURPOSE OF REVIEW: Artificial intelligence has already provided multiple clinically relevant applications in ophthalmology. Yet, the explosion of nonstandardized reporting of high-performing algorithms are rendered useless without robust and streamlined implementation guidelines. The development of protocols and checklists will accelerate the translation of research publications to impact on patient care. RECENT FINDINGS: Beyond technological scepticism, we lack uniformity in analysing algorithmic performance generalizability, and benchmarking impacts across clinical settings. No regulatory guardrails have been set to minimize bias or optimize interpretability; no consensus clinical acceptability thresholds or systematized postdeployment monitoring has been set. Moreover, stakeholders with misaligned incentives deepen the landscape complexity especially when it comes to the requisite data integration and harmonization to advance the field. Therefore, despite increasing algorithmic accuracy and commoditization, the infamous 'implementation gap' persists. Open clinical data repositories have been shown to rapidly accelerate research, minimize redundancies and disseminate the expertise and knowledge required to overcome existing barriers. Drawing upon the longstanding success of existing governance frameworks and robust data use and sharing agreements, the ophthalmic community has tremendous opportunity in ushering artificial intelligence into medicine. By collaboratively building a powerful resource of open, anonymized multimodal ophthalmic data, the next generation of clinicians can advance data-driven eye care in unprecedented ways. SUMMARY: This piece demonstrates that with readily accessible data, immense progress can be achieved clinically and methodologically to realize artificial intelligence's impact on clinical care. Exponentially progressive network effects can be seen by consolidating, curating and distributing data amongst both clinicians and data scientists.
Park EA, Tsikata E, Lee JJ, Shieh E, Braaf B, Vakoc BJ, Bouma BE, de Boer JF, Chen TC. Artifact Rates for 2D Retinal Nerve Fiber Layer Thickness Versus 3D Neuroretinal Rim Thickness Using Spectral-Domain Optical Coherence Tomography. Transl Vis Sci Technol 2020;9(10):10.Abstract
Purpose: To compare the rates of clinically significant artifacts for two-dimensional peripapillary retinal nerve fiber layer (RNFL) thickness versus three-dimensional (3D) neuroretinal rim thickness using spectral-domain optical coherence tomography (SD-OCT). Methods: Only one eye per patient was used for analysis of 120 glaucoma patients and 114 normal patients. For RNFL scans and optic nerve scans, 15 artifact types were calculated per B-scan and per eye. Neuroretinal rim tissue was quantified by the minimum distance band (MDB). Global MDB neuroretinal rim thicknesses were calculated before and after manual deletion of B-scans with artifacts and subsequent automated interpolation. A clinically significant artifact was defined as one requiring manual correction or repeat scanning. Results: Among glaucomatous eyes, artifact rates per B-scan were significantly more common in RNFL scans (61.7%, 74 of 120) compared to B-scans in neuroretinal rim volume scans (20.9%, 1423 of 6820) (95% confidence interval [CI], 31.6-50.0; < 0.0001). For clinically significant artifact rates per eye, optic nerve scans had significantly fewer artifacts (15.8% of glaucomatous eyes, 13.2% of normal eyes) compared to RNFL scans (61.7% of glaucomatous eyes, 25.4% of normal eyes) (glaucoma group: 95% CI, 34.1-57.5, < 0.0001; normal group: 95% CI, 1.3-23.3, = 0.03). Conclusions: Compared to the most commonly used RNFL thickness scans, optic nerve volume scans less frequently require manual correction or repeat scanning to obtain accurate measurements. Translational Relevance: This paper illustrates the potential for 3D OCT algorithms to improve in vivo imaging in glaucoma.
Chang MY, Binenbaum G, Heidary G, Morrison DG, Galvin JA, Trivedi RH, Pineles SL. Imaging Methods for Differentiating Pediatric Papilledema from Pseudopapilledema: A Report by the American Academy of Ophthalmology. Ophthalmology 2020;127(10):1416-1423.Abstract
PURPOSE: To review the published literature on the accuracy of ophthalmic imaging methods to differentiate between papilledema and pseudopapilledema in children. METHODS: Literature searches were conducted in January 2020 in the PubMed database for English-language studies with no date restrictions and in the Cochrane Library database without any restrictions. The combined searches yielded 354 abstracts, of which 17 were reviewed in full text. Six of these were considered appropriate for inclusion in this assessment and were assigned a level of evidence rating by the panel methodologist. All 6 included studies were rated as level III evidence. RESULTS: Fluorescein angiography, a combination of 2 OCT protocols, and multicolor confocal scanning laser ophthalmoscopy (Spectralis SD-OCT; Heidelberg Engineering, Heidelberg, Germany) demonstrated the highest positive percent agreement (92%-100%; 95% confidence interval [CI], 69%-100%) and negative percent agreement (92%-100%; 95% CI, 70%-100%) with a clinical diagnosis of papilledema in children. However, results must be interpreted with caution owing to methodologic limitations, including a small sample size leading to wide CIs and an overall lack of data (there was only 1 study each for the above methods and protocols). Ultrasonographic measures showed either a high positive percent agreement (up to 95%) with low negative percent agreement (as low as 58%) or vice versa. Autofluorescence and fundus photography showed a lower positive (40%-60%) and negative (57%) percent agreement. CONCLUSIONS: Although several imaging methods demonstrated high positive and negative percent agreement with clinical diagnosis, no ophthalmic imaging method conclusively differentiated papilledema from pseudopapilledema in children because of the lack of high-quality evidence. Clinicians must continue to conduct thorough history-taking and examination and make judicious use of ancillary testing to determine which children warrant further workup for papilledema.
Vira J, Marchese A, Singh RB, Agarwal A. Swept-source optical coherence tomography imaging of the retinochoroid and beyond. Expert Rev Med Devices 2020;17(5):413-426.Abstract
: Swept-source optical coherence tomography (SS-OCT) imaging has ushered in an era of rapid and high-resolution imaging of the retinochoroid that provides detailed patho-anatomy of various layers.: In this detailed review, the technology of swept-source imaging including its principles and working has been discussed. The applications of SS-OCT in various conditions including age-related macular degeneration, diabetic retinopathy, pachychoroid spectrum of diseases, and inflammatory vitreoretinal conditions have been elaborated. For each disease, a brief review of literature along with the utility of SS-OCT and optical coherence tomography angiography has been provided with supporting figures. The advantages of SS-OCT over spectral-domain have been discussed if there is sufficient evidence in the literature. Finally, the review summarizes the technological advantages in this field of retinal imaging.: The introduction of SS-OCT in our clinics has added newer devices in our armamentarium that can provide high-quality images of the deep retina and choroid. These advances in medical devices can help in improving our knowledge relating to the pathophysiology of diseases and their evolution. In the near future, rapid and high-resolution imaging may provide real-time volumetric information of the whole retina and the choroid that can be readily used for patient care.
Lu Y, Wang JC, Zeng R, Nagata T, Katz R, Mukai S, Miller JB. Detection of retinal microvascular changes in von Hippel-Lindau disease using optical coherence tomography angiography. PLoS One 2020;15(2):e0229213.Abstract
PURPOSE: Von Hippel-Lindau (VHL) disease is a hereditary disorder that can lead to ophthalmic manifestations, including retinal capillary hemangioma (RCH). The diagnosis of RCH is often guided by wide-field fluorescein angiography. In some cases, optical coherence tomography angiography (OCT-A) serves as a non-invasive alternative to FA. Herein, we used OCT-A to examine the macular microvasculature in patients with VHL disease. SUBJECTS: Subjects were selected from patients with a diagnosis of VHL. The control group included eyes without retinal diagnosis from patients with an episode of unilateral retinal detachment or trauma and age ≤ 50 years old. METHODS: Subjects were scanned on the Optovue RTVue-XR device to acquire 3mm x 3mm OCT-A images of the superficial (SCP) and deep capillary plexus (DCP). SCP and DCP vessel density (VD) were calculated after the images were binarized. Furthermore, for subjects with RCH, each OCT-A image was divided equally into four quadrants. SCP and DCP VD of quadrants with RCH were compared to those without RCH. T-tests were performed for statistical analysis. RESULTS: 67 eyes with a history of VHL disease were included as study subjects, while 16 eyes were included as controls. Significant increases in VD were found in patients with VHL disease for both the SCP (p = 0.0441) and DCP (p = 0.0344). When comparing quadrants with associated RCH development to those without, we found no significant difference in SCP VD (p = 0.160) or DCP VD (p = 0.484). CONCLUSIONS: OCT-A can detect changes in the retinal microvasculature in the macula of patients with VHL disease. OCT-A imaging may be an additional tool for screening and early detection of patients at risk of developing ocular complications of VHL disease. Future studies should explore subtle progression on OCT-A associated with the pathogenesis and development of RCH, particularly with larger scan patterns.
Porporato N, Baskaran M, Tun TA, Sultana R, Tan M, Quah JHM, Allen JC, Perera S, Friedman DS, Cheng CY, Aung T. Understanding diagnostic disagreement in angle closure assessment between anterior segment optical coherence tomography and gonioscopy. Br J Ophthalmol 2020;104(6):795-799.Abstract
BACKGROUND/AIMS: Although being a more objective tool for assessment and follow-up of angle closure, reliability studies have reported a moderate diagnostic performance for anterior segment optical coherence tomography (OCT) technologies when comparing with gonioscopy as the reference standard. We aim to determine factors associated with diagnostic disagreement in angle closure when assessed by anterior segment swept source OCT (SS-OCT, CASIA SS-1000; Tomey, Nagoya, Japan) and gonioscopy. METHODS: Cross-sectional study. A total of 2027 phakic subjects aged ≥50 years, with no relevant previous ophthalmic history, were consecutively recruited from a community polyclinic in Singapore. Gonioscopy and SS-OCT (128 radial scans) for the entire circumference of the angle were performed for each subject. A two-quadrant closed gonioscopic definition was used. On SS-OCT images, angle closure was defined as iridotrabecular contact (ITC) to the extent of ≥35%, ≥50% and ≥75% of the circumferential angle. Diagnostic disagreements between both methods, that is, false positives or overcalls and false negatives or undercalls were defined, respectively, as gonioscopic open/closed angles inversely assessed as closed/open by SS-OCT. RESULTS: Two hundred and seventy-two (14.7%) resulted in overcall results (false positives) when ≥50% of the angle circumference was closed using SS-OCT. These eyes had significantly wider (anterior chamber width, 11.7 vs 11.6 mm, p<0.001) and deeper (anterior chamber depth (ACD), 2.4 vs 2.2 mm, p<0.001) anterior chambers than eyes assessed by both methods as closed (true positives). Deeper ACD (OR 9.31) and lower lens vault (LV) (OR 0.04) were significantly associated with a false positive diagnosis in the multivariate analysis. Most of these cases had short (52.6%) or irregular (39%) ITC in SS-OCT images. CONCLUSIONS: We found that anterior chamber dimensions, determined by ACD and LV, were factors significantly associated with diagnostic disagreement between anterior segment SS-OCT and gonioscopy in angle closure assessment.
Cui Y, Zhu Y, Wang JC, Lu Y, Zeng R, Katz R, Wu DM, Vavvas DG, Husain D, Miller JW, Kim LA, Miller JB. Imaging Artifacts and Segmentation Errors With Wide-Field Swept-Source Optical Coherence Tomography Angiography in Diabetic Retinopathy. Transl Vis Sci Technol 2019;8(6):18.Abstract
Purpose: To analyze imaging artifacts and segmentation errors with wide-field swept-source optical coherence tomography angiography (SS-OCTA) in diabetic retinopathy (DR). Methods: We conducted a prospective, observational study at Massachusetts Eye and Ear from December 2018 to March 2019. Proliferative diabetic retinopathy (PDR), nonproliferative diabetic retinopathy (NPDR), diabetic patients with no diabetic retinopathy (DR), and healthy control eyes were included. All patients were imaged with a SS-OCTA and the Montage Angio (15 × 9 mm) was used for analysis. Images were independently evaluated by two graders using the motion artifact score (MAS). All statistical analyses were performed using SPSS 25.0 and R software. Results: One hundred thirty-six eyes in 98 participants with the montage image were included in the study. Patients with more severe stages of DR had higher MAS by trend test analysis ( < 0.05). The occurrence of segmentation error was 0% in the healthy group, 10.53% in the no DR group, 10.00% in the NPDR group, and 50% in the PDR group. Multivariate regression analysis showed that the severity of DR and dry eye were the major factors affecting MAS ( < 0.05). There were some modifiable artifacts that could be corrected to improve image quality. Conclusions: Wide field SS-OCTA assesses retinal microvascular changes by noninvasive techniques, yet distinguishing real alterations from artifacts is paramount to accurate interpretations. DR severity and dry eye correlated with MAS. Translational Relevance: Understanding contributing factors and methods to reduce artifacts is critical to routine use and clinical trial with wide-field SS-OCTA.
Rong AJ, Fan KC, Golshani B, Bobinski M, McGahan JP, Eliott D, Morse LS, Modjtahedi BS. Multimodal imaging features of intraocular foreign bodies. Semin Ophthalmol 2019;:1-15.Abstract
: To determine the imaging approach for evaluating intraocular foreign bodies (IOFBs) by comparing the ability of different modalities [plain film x-ray, computed tomography (CT), magnetic resonsance imaging (MRI), convetional ultrasound, and ultrasound biomicroscopy] to detect and characterize IOFBs. : Systematic review of the literature. : CT is the most practical first step for evaluating patients with suspected IOFBs because it can detect a wide range of IOFB types at small limitis of detection. MRI and ultrasound are best reserved as adjunctive tests in most cases although these tests may provide important insights especially with wood, plastic, and glass IOFBs. Imaging characteristics of metal, wood, glass, plastic, stone, concrete, and graphite IOFBs are reviewed. : Understanding the limits of detection for each IOFB type and imaging modality as well as the characteristic features of different IOFBs is of paramount importance to optimizing the management of ocular trauma patients.
Sajdak BS, Salmon AE, Cava JA, Allen KP, Freling S, Ramamirtham R, Norton TT, Roorda A, Carroll J. Noninvasive imaging of the tree shrew eye: Wavefront analysis and retinal imaging with correlative histology. Exp Eye Res 2019;185:107683.Abstract
Tree shrews are small mammals with excellent vision and are closely related to primates. They have been used extensively as a model for studying refractive development, myopia, and central visual processing and are becoming an important model for vision research. Their cone dominant retina (∼95% cones) provides a potential avenue to create new damage/disease models of human macular pathology and to monitor progression or treatment response. To continue the development of the tree shrew as an animal model, we provide here the first measurements of higher order aberrations along with adaptive optics scanning light ophthalmoscopy (AOSLO) images of the photoreceptor mosaic in the tree shrew retina. To compare intra-animal in vivo and ex vivo cone density measurements, the AOSLO images were matched to whole-mount immunofluorescence microscopy. Analysis of the tree shrew wavefront indicated that the optics are well-matched to the sampling of the cone mosaic and is consistent with the suggestion that juvenile tree shrews are nearly emmetropic (slightly hyperopic). Compared with in vivo measurements, consistently higher cone density was measured ex vivo, likely due to tissue shrinkage during histological processing. Tree shrews also possess massive mitochondria ("megamitochondria") in their cone inner segments, providing a natural model to assess how mitochondrial size affects in vivo retinal imagery. Intra-animal in vivo and ex vivo axial distance measurements were made in the outer retina with optical coherence tomography (OCT) and transmission electron microscopy (TEM), respectively, to determine the origin of sub-cellular cone reflectivity seen on OCT. These results demonstrate that these megamitochondria create an additional hyper-reflective outer retinal reflective band in OCT images. The ability to use noninvasive retinal imaging in tree shrews supports development of this species as a model of cone disorders.
Siddiqui Y, Yin J. Anterior Segment Applications of Optical Coherence Tomography Angiography. Semin Ophthalmol 2019;:1-6.Abstract
: To review the current literature regarding optical coherence tomography angiography (OCT-A) applications in the anterior segment. : A literature search was performed for terms including OCT-Angiography, anterior segment, cornea, conjunctiva, iris, applications and use in ophthalmology. : Fifteen studies were identified, 14 in human subjects. Studies with OCT-A of the conjunctiva, episclera, cornea, and iris were identified, some with normal eyes imaged and others with various pathologies. Most of these studies imaged corneal neovascularization. Three studies described protocols used for image acquisition, one of which was referenced by two later papers. : OCT-A is a noninvasive technology with recent applications in the anterior segment. Several pilot studies have been performed on various anterior segment structures and disease states however standardization of image acquisition techniques is still needed. Future imaging could allow noninvasive and serial monitoring of pathology as well as recurrence after therapeutic intervention.
Werner AC, Shen LQ. A Review of OCT Angiography in Glaucoma. Semin Ophthalmol 2019;:1-8.Abstract
There is growing evidence that vascular dysfunction plays a role in the pathogenesis of glaucoma. The details of this relationship have remained elusive partially due to limitations in our ability to assess blood flow in the optic nerve. Optical coherence tomography angiography (OCTA) has emerged as a promising new technology well positioned to become the first clinically suitable test of optic nerve perfusion. OCTA uses the motion of red blood cells as an intrinsic contrast agent to create reproducible images of microvascular networks rapidly and non-invasively. A significant body of research regarding the use of OCTA in glaucoma has emerged in recent years. This review aims to provide an overview of the basic principles underlying OCTA technology, summarize the current literature regarding the application of OCTA in the management of glaucoma, and address the role of OCTA in explicating the vascular pathogenesis of glaucoma.
Sun P, Tandias RM, Yu G, Arroyo JG. SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY FINDINGS AND VISUAL OUTCOME AFTER TREATMENT FOR VITREOMACULAR TRACTION. Retina 2019;39(6):1054-1060.Abstract
PURPOSE: To evaluate the capacity of spectral domain optical coherence tomography macular findings to predict best-corrected visual acuity (BCVA) outcomes after treatment for symptomatic vitreomacular traction. METHODS: This consecutive, retrospective study included 24 patients (29 eyes) who experienced vitreomacular traction release with pneumatic vitreolysis (n = 9), intravitreal ocriplasmin (n = 6), or pars plana vitrectomy (n = 14). Preoperative and postoperative spectral domain optical coherence tomography images were used to determine the cone outer segment tips (COST) line, inner segment/outer segment line, and other frequently used features. Correlations between optical coherence tomography findings and BCVA were determined using regression analyses. RESULTS: Postoperative BCVA was correlated with length of the COST line and inner segment/outer segment line defects at 1, 3, 6, and 12 months postoperatively (P < 0.05) by simple linear regression analysis. However, multivariable regression analysis showed that only length of the COST line defect was significantly correlated with BCVA preoperatively and postoperatively (P < 0.05). Postoperative BCVA improvement at 12 months was significantly correlated with preoperative length of the COST line defect (P < 0.01). CONCLUSION: Recovery of the COST line and inner segment/outer segment line defects as observed by spectral domain optical coherence tomography is positively correlated with visual acuity improvement after successful vitreomacular traction treatment. Best-corrected visual acuity improvement may be predicted using the length of the preoperative COST line defect.
Gupta MP, Dow E, Jeng-Miller KW, Mukai S, Orlin A, Xu K, Yonekawa Y, Chan PRV. SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY FINDINGS IN COATS DISEASE. Retina 2019;39(6):1177-1185.Abstract
PURPOSE: To evaluate microstructural retinal abnormalities on spectral domain optical coherence tomography (SD-OCT) imaging of eyes with Coats disease. METHODS: This is a multicenter, retrospective study in which SD-OCT images of patients with treatment-naive Coats disease were correlated with clinical examination and visual acuity and, when available, followed longitudinally over time. RESULTS: Macular SD-OCT of 27 eyes with Coats disease revealed intraretinal edema (59%), intraretinal exudates (67%), subretinal fluid (37%), subretinal exudate (48%), ellipsoid zone disruption (52%), external limiting membrane disruption (41%), and subfoveal nodule (26%). All these microstructural abnormalities correlated with worse baseline and final visual acuities (P < 0.05) on univariate analysis, except for intraretinal edema which exhibited a nonstatistically significant trend toward worse baseline visual acuity (P = 0.16). Within stage 2b eyes, external limiting membrane disruption and subretinal nodule on SD-OCT were associated with worse baseline visual acuity (P = 0.02 for both), and there was a trend toward worse final visual acuity with external limiting membrane disruption and subretinal nodule (P = 0.17 for both) and worse baseline (P = 0.08) and final (P = 0.13) visual acuities with ellipsoid zone disruption. No microstructural abnormalities were noted on OCT of fellow eyes. CONCLUSION: Spectral domain OCT can identify microstructural abnormalities in Coats disease that are associated on univariate analysis with worse baseline visual acuity and visual prognosis. Further larger studies are necessary.

Pages