Mobility Enhancement & Vision Rehabilitation

Mobility Enhancement & Vision Rehabilitation Publications

Ichhpujani P, Singh RB, Foulsham W, Thakur S, Lamba AS. Visual implications of digital device usage in school children: a cross-sectional study. BMC Ophthalmol 2019;19(1):76.Abstract
PURPOSE: To evaluate the use of digital devices, reading habits and the prevalence of eyestrain among urban Indian school children, aged 11-17 years. METHODS: The study included 576 adolescents attending urban schools who were surveyed regarding their electronic device usage. Additional information on the factors that may have an effect on ocular symptoms was collected. RESULTS: Twenty percent of students aged 11 in the study population use digital devices on a daily basis, in comparison with 50% of students aged 17. In addition to using these devices as homework aids, one third of study participants reported using digital devices for reading instead of conventional textbooks. The majority of students preferred sitting on a chair while reading (77%; 445 students), with only 21% (123 students) preferring to lie on the bed and 8 students alternating between chair and bed. There was a significant association between the students who preferred to lie down and those who experienced eyestrain, as reported by a little over one fourth of the student population (27%). Out of 576 students, 18% (103) experienced eyestrain at the end of the day after working on digital devices. CONCLUSIONS: The increased use of digital devices by adolescents brings a new challenge of digital eyestrain at an early age. Our study reports the patterns of electronic device usage by school children, evaluates factors associated with eyestrain and highlights the need for further investigation of these issues.
Costela FM, Saunders DR, Rose DJ, Katjezovic S, Reeves SM, Woods RL. People With Central Vision Loss Have Difficulty Watching Videos. Invest Ophthalmol Vis Sci 2019;60(1):358-364.Abstract
Purpose: People with central vision loss (CVL) often report difficulties watching video. We objectively evaluated the ability to follow the story (using the information acquisition method). Methods: Subjects with CVL (n = 23) or normal vision (NV, n = 60) described the content of 30-second video clips from movies and documentaries. We derived an objective information acquisition (IA) score for each response using natural-language processing. To test whether the impact of CVL was simply due to reduced resolution, another group of NV subjects (n = 15) described video clips with defocus blur that reduced visual acuity to 20/50 to 20/800. Mixed models included random effects correcting for differences between subjects and between the clips, with age, gender, cognitive status, and education as covariates. Results: Compared to both NV groups, IA scores were worse for the CVL group (P < 0.001). IA reduced with worsening visual acuity (P < 0.001), and the reduction with worsening visual acuity was greater for the CVL group than the NV-defocus group (P = 0.01), which was seen as a greater discrepancy at worse levels of visual acuity. Conclusions: The IA method was able to detect difficulties in following the story experienced by people with CVL. Defocus blur failed to recreate the CVL experience. IA is likely to be useful for evaluations of the effects of vision rehabilitation.
Savage SW, Spano LP, Bowers AR. The effects of age and cognitive load on peripheral-detection performance. J Vis 2019;19(1):15.Abstract
Age-related declines in both peripheral vision and cognitive resources could contribute to the increased crash risk of older drivers. However, it is unclear whether increases in age and cognitive load result in equal detriments to detection rates across all peripheral target eccentricities (general interference effect) or whether these detriments become greater with increasing eccentricity (tunnel effect). In the current study we investigated the effects of age and cognitive load on the detection of peripheral motorcycle targets (at 5°-30° eccentricity) in static images of intersections. We used a dual-task paradigm in which cognitive load was manipulated without changing the complexity of the central (foveal) visual stimulus. Each image was displayed briefly (250 ms) to prevent eye movements. When no cognitive load was present, age resulted in a tunnel effect; however, when cognitive load was high, age resulted in a general interference effect. These findings suggest that tunnel and general interference effects can co-occur and that the predominant effect varies with the level of demand placed on participants' resources. High cognitive load had a general interference effect in both age groups, but the effect attenuated at large target eccentricities (opposite of a tunnel effect). Low cognitive load had a general interference effect in the older but not the younger group, impairing detection of motorcycle targets even at 5° eccentricity, which could present an imminent collision risk in real driving.
Wolfe JM, Cain MS, Aizenman AM. Guidance and selection history in hybrid foraging visual search. Atten Percept Psychophys 2019;Abstract
In Hybrid Foraging tasks, observers search for multiple instances of several types of target. Collecting all the dirty laundry and kitchenware out of a child's room would be a real-world example. How are such foraging episodes structured? A series of four experiments shows that selection of one item from the display makes it more likely that the next item will be of the same type. This pattern holds if the targets are defined by basic features like color and shape but not if they are defined by their identity (e.g., the letters p & d). Additionally, switching between target types during search is expensive in time, with longer response times between successive selections if the target type changes than if they are the same. Finally, the decision to leave a screen/patch for the next screen in these foraging tasks is imperfectly consistent with the predictions of optimal foraging theory. The results of these hybrid foraging studies cast new light on the ways in which prior selection history guides subsequent visual search in general.
Selivanova A, Fenwick E, Man R, Seiple W, Jackson ML. Outcomes After Comprehensive Vision Rehabilitation Using Vision-related Quality of Life Questionnaires: Impact of Vision Impairment and National Eye Institute Visual Functioning Questionnaire. Optom Vis Sci 2019;96(2):87-94.Abstract
SIGNIFICANCE: This research is significant because, although vision-related quality of life (VRQoL) is improved after vision rehabilitation (VR), patients with certain characteristics respond less positively on VRQoL measures, and this should inform future care. PURPOSE: The purposes of this study were to evaluate how two VRQoL questionnaires compare in measuring change in patient-reported outcomes after VR and to determine if patient characteristics or occupational therapy (OT) predict higher scores after rehabilitation. METHODS: In a prospective clinical cohort study, 109 patients with low vision completed the Impact of Vision Impairment (IVI) and the National Eye Institute Visual Functioning Questionnaire (NEI VFQ-25) before and after VR. Comprehensive VR included consultation with an ophthalmologist and OT if required. The relationships of six baseline characteristics (age, sex, visual acuity, contrast sensitivity, field loss, diagnosis) and OT were assessed with VRQoL scores using multivariable logistic regression. RESULTS: The mean (SD) age was 68.5 (19.2) years, and 61 (56%) were female. After rehabilitation, increases in scores were observed in all IVI subscales (reading [P < .001], mobility [P = .002], well-being [P = .0003]) and all NEI VFQ-25 subscales (functional [P = .01], socioemotional [P = .003]). Those who were referred to OT but did not attend and those who had hemianopia/field loss were less likely to have higher VRQoL in IVI mobility and well-being. Those attending OT for more than 3 hours were less likely to have better scores in emotional NEI VFQ. Men were less likely to have increased scores in functional and emotional NEI VFQ, whereas those with diagnoses of nonmacular diseases had higher odds of having increased scores on the emotional NEI VFQ (all, P < .05). CONCLUSION: Both the IVI and the NEI VFQ-25 detected change in patients' VRQoL after rehabilitation. Most of the patient characteristics we considered predicted a lower likelihood of increased scores in VRQoL.
Bernstein CA, Nir R-R, Noseda R, Fulton AB, Huntington S, Lee AJ, Bertisch SM, Hovaguimian A, Buettner C, Borsook D, Burstein R. The migraine eye: distinct rod-driven retinal pathways' response to dim light challenges the visual cortex hyperexcitability theory. Pain 2019;160(3):569-578.Abstract
Migraine-type photophobia, most commonly described as exacerbation of headache by light, affects nearly 90% of the patients. It is the most bothersome symptom accompanying an attack. Using subjective psychophysical assessments, we showed that migraine patients are more sensitive to all colors of light during ictal than during interictal phase and that control subjects do not experience pain when exposed to different colors of light. Based on these findings, we suggested that color preference is unique to migraineurs (as it was not found in control subjects) rather than migraine phase (as it was found in both phases). To identify the origin of this photophobia in migraineurs, we compared the electrical waveforms that were generated in the retina and visual cortex of 46 interictal migraineurs to those generated in 42 healthy controls using color-based electroretinography and visual-evoked potential paradigms. Unexpectedly, it was the amplitude of the retinal rod-driven b wave, which was consistently larger (by 14%-19% in the light-adapted and 18%-34% in the dark-adapted flash ERG) in the migraineurs than in the controls, rather than the retinal cone-driven a wave or the visual-evoked potentials that differs most strikingly between the 2 groups. Mechanistically, these findings suggest that the inherent hypersensitivity to light among migraine patients may originate in the retinal rods rather than retinal cones or the visual cortex. Clinically, the findings may explain why migraineurs complain that the light is too bright even when it is dim to the extent that nonmigraineurs feel as if they are in a cave.
Costela FM, Woods RL. When Watching Video, Many Saccades Are Curved and Deviate From a Velocity Profile Model. Front Neurosci 2018;12:960.Abstract
Commonly, saccades are thought to be ballistic eye movements, not modified during flight, with a straight path and a well-described velocity profile. However, they do not always follow a straight path and studies of saccade curvature have been reported previously. In a prior study, we developed a real-time, saccade-trajectory prediction algorithm to improve the updating of gaze-contingent displays and found that saccades with a curved path or that deviated from the expected velocity profile were not well fit by our saccade-prediction algorithm (velocity-profile deviation), and thus had larger updating errors than saccades that had a straight path and had a velocity profile that was fit well by the model. Further, we noticed that the curved saccades and saccades with high velocity-profile deviations were more common than we had expected when participants performed a natural-viewing task. Since those saccades caused larger display updating errors, we sought a better understanding of them. Here we examine factors that could affect curvature and velocity profile of saccades using a pool of 218,744 saccades from 71 participants watching "Hollywood" video clips. Those factors included characteristics of the participants (e.g., age), of the videos (importance of faces for following the story, genre), of the saccade (e.g., magnitude, direction), time during the session (e.g., fatigue) and presence and timing of scene cuts. While viewing the video clips, saccades were most likely horizontal or vertical over oblique. Measured curvature and velocity-profile deviation had continuous, skewed frequency distributions. We used mixed-effects regression models that included cubic terms and found a complex relationship between curvature, velocity-profile deviation and saccade duration (or magnitude). Curvature and velocity-profile deviation were related to some video-dependent features such as lighting, face presence, or nature and human figure content. Time during the session was a predictor for velocity profile deviations. Further, we found a relationship for saccades that were in flight at the time of a scene cut to have higher velocity-profile deviations and lower curvature in univariable models. Saccades characteristics vary with a variety of factors, which suggests complex interactions between oculomotor control and scene content that could be explored further.
Wolfe JM, Utochkin IS. What is a preattentive feature?. Curr Opin Psychol 2018;29:19-26.Abstract
The concept of a preattentive feature has been central to vision and attention research for about half a century. A preattentive feature is a feature that guides attention in visual search and that cannot be decomposed into simpler features. While that definition seems straightforward, there is no simple diagnostic test that infallibly identifies a preattentive feature. This paper briefly reviews the criteria that have been proposed and illustrates some of the difficulties of definition.
Gao Z, Hwang A, Zhai G, Peli E. Correcting geometric distortions in stereoscopic 3D imaging. PLoS One 2018;13(10):e0205032.Abstract
Motion in a distorted virtual 3D space may cause visually induced motion sickness. Geometric distortions in stereoscopic 3D can result from mismatches among image capture, display, and viewing parameters. Three pairs of potential mismatches are considered, including 1) camera separation vs. eye separation, 2) camera field of view (FOV) vs. screen FOV, and 3) camera convergence distance (i.e., distance from the cameras to the point where the convergence axes intersect) vs. screen distance from the observer. The effect of the viewer's head positions (i.e., head lateral offset from the screen center) is also considered. The geometric model is expressed as a function of camera convergence distance, the ratios of the three parameter-pairs, and the offset of the head position. We analyze the impacts of these five variables separately and their interactions on geometric distortions. This model facilitates insights into the various distortions and leads to methods whereby the user can minimize geometric distortions caused by some parameter-pair mismatches through adjusting of other parameter pairs. For example, in postproduction, viewers can correct for a mismatch between camera separation and eye separation by adjusting their distance from the real screen and changing the effective camera convergence distance.
Qiu C, Jung J-H, Tuccar-Burak M, Spano L, Goldstein R, Peli E. Measuring Pedestrian Collision Detection With Peripheral Field Loss and the Impact of Peripheral Prisms. Transl Vis Sci Technol 2018;7(5):1.Abstract
Purpose: Peripheral field loss (PFL) due to retinitis pigmentosa, choroideremia, or glaucoma often results in a highly constricted residual central field, which makes it difficult for patients to avoid collision with approaching pedestrians. We developed a virtual environment to evaluate the ability of patients to detect pedestrians and judge potential collisions. We validated the system with both PFL patients and normally sighted subjects with simulated PFL. We also tested whether properly placed high-power prisms may improve pedestrian detection. Methods: A virtual park-like open space was rendered using a driving simulator (configured for walking speeds), and pedestrians in testing scenarios appeared within and outside the residual central field. Nine normally sighted subjects and eight PFL patients performed the pedestrian detection and collision judgment tasks. The performance of the subjects with simulated PFL was further evaluated with field of view expanding prisms. Results: The virtual system for testing pedestrian detection and collision judgment was validated. The performance of PFL patients and normally sighted subjects with simulated PFL were similar. The prisms for simulated PFL improved detection rates, reduced detection response times, and supported reasonable collision judgments in the prism-expanded field; detections and collision judgments in the residual central field were not influenced negatively by the prisms. Conclusions: The scenarios in a virtual environment are suitable for evaluating PFL and the impact of field of view expanding devices. Translational Relevance: This study validated an objective means to evaluate field expansion devices in reproducible near-real-life settings.
Shi C, Luo G. A Streaming Motion Magnification Core for Smart Image Sensors. IEEE Trans Circuits Syst II Express Briefs 2018;65(9):1229-1233.Abstract
This paper proposes a modified Eulerian Video Magnification (EVM) algorithm and a hardware implementation of a motion magnification core for smart image sensors. Compared to the original EVM algorithm, we perform the pixel-wise temporal bandpass filtering only once rather than multiple times on all scale layers, to reduce the memory and multiplier requirement for hardware implementation. A pixel stream processing architecture with pipelined blocks is proposed for the magnification core, enabling it to readily fit common image sensing components with streaming pixel output, while achieving higher performance with lower system cost. We implemented an FPGA-based prototype that is able to process up to 90M pixels per second and magnify subtle motion. The motion magnification results are comparable to the original algorithm running on PC.
Palmer EM, Van Wert MJ, Horowitz TS, Wolfe JM. Measuring the time course of selection during visual search. Atten Percept Psychophys 2018;Abstract
In visual search tasks, observers can guide their attention towards items in the visual field that share features with the target item. In this series of studies, we examined the time course of guidance toward a subset of items that have the same color as the target item. Landolt Cs were placed on 16 colored disks. Fifteen distractor Cs had gaps facing up or down while one target C had a gap facing left or right. Observers searched for the target C and reported which side contained the gap as quickly as possible. In the absence of other information, observers must search at random through the Cs. However, during the trial, the disks changed colors. Twelve disks were now of one color and four disks were of another color. Observers knew that the target C would always be in the smaller color set. The experimental question was how quickly observers could guide their attention to the smaller color set. Results indicate that observers could not make instantaneous use of color information to guide the search, even when they knew which two colors would be appearing on every trial. In each study, it took participants 200-300 ms to fully utilize the color information once presented. Control studies replicated the finding with more saturated colors and with colored C stimuli (rather than Cs on colored disks). We conclude that segregation of a display by color for the purposes of guidance takes 200-300 ms to fully develop.
Houston KE, Bowers AR, Peli E, Woods RL. Peripheral Prisms Improve Obstacle Detection during Simulated Walking for Patients with Left Hemispatial Neglect and Hemianopia. Optom Vis Sci 2018;95(9):795-804.Abstract
SIGNIFICANCE: The first report on the use of peripheral prisms (p-prisms) for patients with left neglect and homonymous visual field defects (HVFDs). PURPOSE: The purpose of this study was to investigate if patients with left hemispatial neglect and HVFDs benefit from p-prisms to expand the visual field and improve obstacle detection. METHODS: Patients (24 with HVFDs, 10 of whom had left neglect) viewed an animated, virtual, shopping mall corridor and reported if they would have collided with a human obstacle that appeared at various offsets up to 13.5° from their simulated walking path. There were 40 obstacle presentations on each side, with and without p-prisms. No training with p-prisms was provided, and gaze was fixed at the center of expansion. RESULTS: Detection on the side of the HVFD improved significantly with p-prisms in both groups, from 26 to 92% in the left-neglect group and 43 to 98% in the non-neglect group (both P < .001). There was a tendency for greater improvement in the neglect patients with p-prisms. For collision judgments, both groups exhibited a large increase in perceived collisions on the side of the HVFD with the prisms (P < .001), with no difference between the groups (P = .93). Increased perceived collisions represent a wider perceived safety margin on the side of the HVFD. CONCLUSIONS: Within the controlled conditions of this simulated, collision judgment task, patients with left neglect responded well to initial application of p-prisms exhibiting improved detection and wider safety margins on the side of the HVFD that did not differ from non-neglect patients. Further study of p-prisms for neglect patients in free-gaze conditions after extended wear and in real-world mobility tasks is clearly warranted.
Jung J-H, Peli E. No Useful Field Expansion with Full-field Prisms. Optom Vis Sci 2018;95(9):805-813.Abstract
SIGNIFICANCE: Full-field prisms that fill the entire spectacle eye wire have been considered as field expansion devices for homonymous hemianopia (HH) and acquired monocular vision (AMV). Although the full-field prism is used for addressing binocular dysfunction and for prism adaptation training after brain injury as treatment for spatial hemineglect, we show that the full-field prism for field expansion does not effectively expand the visual field in either HH or AMV. PURPOSE: Full-field prisms may shift a portion of the blind side to the residual seeing side. However, foveal fixation on an object of interest through a full-field prism requires head and/or eye rotation away from the blind side, thus negating the shift of the field toward the blind side. METHODS: We fit meniscus and flat full-field 7Δ and 12Δ yoked prisms and conducted Goldmann perimetry in HH and AMV. We compared the perimetry results with ray tracing calculations. RESULTS: The rated prism power was in effect at the primary position of gaze for all prisms, and the meniscus prisms maintained almost constant power at all eccentricities. To fixate on the perimetry target, the subjects needed to turn their head and/or eyes away from the blind side, which negated the field shift into the blind side. In HH, there was no difference in the perimetry results on the blind side with any of the prisms. In AMV, the lower nasal field of view was slightly shifted into the blind side with the flat prisms, but not with the meniscus prisms. CONCLUSIONS: Full-field prisms are not an effective field expansion device owing to the inevitable fixation shift. There is potential for a small field shift with the flat full-field prism in AMV, but such lenses cannot incorporate refractive correction. Furthermore, in considering the apical scotoma, the shift provides a mere field substitution at best.
Costela FM, Saunders DR, Kajtezovic S, Rose DJ, Woods RL. Measuring the Difficulty Watching Video With Hemianopia and an Initial Test of a Rehabilitation Approach. Transl Vis Sci Technol 2018;7(4):13.Abstract
Purpose: If you cannot follow the story when watching a video, then the viewing experience is degraded. We measured the difficulty of following the story, defined as the ability to acquire visual information, which is experienced by people with homonymous hemianopia (HH). Further, we proposed and tested a novel rehabilitation aid. Methods: Participants watched 30-second directed video clips. Following each video clip, subjects described the visual content of the clip. An objective score of information acquisition (IA) was derived by comparing each new response to a control database of descriptions of the same clip using natural language processing. Study 1 compared 60 participants with normal vision (NV) to 24 participants with HH to test the hypothesis that participants with HH would score lower than NV participants, consistent with reports from people with HH that describe difficulties in video watching. In the second study, 21 participants with HH viewed clips with or without a superimposed dynamic cue that we called a content guide. We hypothesized that IA scores would increase using this content guide. Results: The HH group had a significantly lower IA score, with an average of 2.8, compared with 4.3 shared words of the NV group (mixed-effects regression, < 0.001). Presence of the content guide significantly increased the IA score by 0.5 shared words ( = 0.03). Conclusions: Participants with HH had more difficulty acquiring information from a video, which was objectively demonstrated (reduced IA score). The content guide improved information acquisition, but not to the level of people with NV. Translational Relevance: The value as a possible rehabilitation aid of the content guide warrants further study that involves an extended period of content-guide use and a randomized controlled trial.