Guhan S, Peng S-L, Janbatian H, Saadeh S, Greenstein S, Al Bahrani F, Fadlallah A, Yeh T-C, Melki SA. Surgical adhesives in ophthalmology: history and current trends. Br J Ophthalmol 2018;Abstract
Tissue adhesives are gaining popularity in ophthalmology, as they could potentially reduce the complications associated with current surgical methods. An ideal tissue adhesive should have superior tensile strength, be non-toxic and anti-inflammatory, improve efficiency and be cost-effective. Both synthetic and biological glues are available. The primary synthetic glues include cyanoacrylate and the recently introduced polyethylene glycol (PEG) derivatives, while most biological glues are composed of fibrin. Cyanoacrylate has a high tensile strength, but rapidly polymerises upon contact with any fluid and has been associated with histotoxicity. Fibrin induces less toxic and inflammatory reactions, and its polymerisation time can be controlled. Tensile strength studies have shown that fibrin is not as strong as cyanoacrylate. While more research is needed, PEG variants currently appear to have the most promise. These glues are non-toxic, strong and time-effective. Through MEDLINE and internet searches, this paper presents a systematic review of the current applications of surgical adhesives to corneal, glaucoma, retinal, cataract and strabismus surgeries. Our review suggests that surgical adhesives have promise to reduce problems in current ophthalmic surgical procedures.
Hellgren G, Löfqvist C, Hansen-Pupp I, Gram M, Smith LE, Ley D, Hellström A. Increased postnatal concentrations of pro-inflammatory cytokines are associated with reduced IGF-I levels and retinopathy of prematurity. Growth Horm IGF Res 2018;39:19-24.Abstract
OBJECTIVE: Retinopathy of prematurity (ROP) is a multifactorial disease linked to low insulin-like growth factor (IGF)-I levels and perhaps to postnatal inflammation. Here, we investigated the longitudinal postnatal serum concentrations of pro-inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α in relation to IGF-I levels and ROP. DESIGN: The study cohort included 52 infants born before 31 gestational weeks. The infants were screened for ROP and classified as non-ROP (n=33), non-proliferative ROP (stages 1 and 2; n=10), or proliferative ROP (stage 3, all treated for ROP; n=9). Blood samples were collected at birth, 24h after birth, and then weekly until at least 36weeks postmenstrual age (PMA) (i.e., up to 13weeks after birth). Circulating levels of IL-6 and TNF-α were evaluated in relation to circulating IGF-I levels and ROP. RESULTS: IL-6 levels negatively correlated with IGF-I levels between 5 and 8weeks after birth, (p<0.01 to p<0.05). At birth, the IL-6 and TNF-α levels were similar independent of later ROP. Twenty-four hours after birth, both IL-6 and TNF-α levels had increased in infants later treated for ROP (p<0.05). Postnatal, infants treated for ROP had higher IL-6 levels than infants without ROP. CONCLUSIONS: The pro-inflammatory response is associated with low IGF-I levels and the development of ROP.
Peiris TJ, Indaram M, Koo E, Soul JS, Hunter DG. Congenital muscular dystrophy-dystroglycanopathy, type A, featuring bilateral retinal dysplasia and vertical angle kappa. J AAPOS 2018;22(3):242-244.e1.Abstract
Muscular dystrophy-dystroglycanopathy type A (MDDGA3), one of a group of diseases collectively known as congenital muscular dystrophies, is an alpha-dystroglycanopathy with characteristic brain and ocular abnormalities. We report the case of a 9-month-old boy with developmental delay whose family sought evaluation for esotropia. Subsequent examination, imaging, and testing revealed significant motor and cognitive delay, marked weakness with appendicular spasticity, and a diffuse brain malformation. In addition, the patient had poor visual acuity, nystagmus, optic nerve hypoplasia, bilateral retinal dysplasia and retinal dragging with a large vertical angle kappa, and an avascular peripheral retina. Genetic testing revealed two known heterozygous mutations in the POMGnT1 gene confirming MDDGA3. He was treated with botulinum toxin injections for his strabismus and continues to be followed, with planned laser ablation of the peripheral avascular retina.
Lin M, Anesi SD, Ma L, Ahmed A, Small K, Foster SC. Characteristics and Visual Outcome of Refractory Retinal Vasculitis Associated With Antineutrophil Cytoplasm Antibody-Associated Vasculitides. Am J Ophthalmol 2018;187:21-33.Abstract
PURPOSE: To describe the clinical characteristics, therapies, visual outcomes, and prognoses of patients with retinal vasculitis associated with antineutrophil cytoplasmic antibody (ANCA)-associated vasculitides (AAV). DESIGN: Retrospective case series. METHODS: Patients diagnosed with retinal vasculitis associated with AAV and at least 6 months of follow-up were included. Demographic data, systemic and ocular features, best-corrected visual acuity at the initial visit and latest visit, fluorescein angiography (FA) and indocyanine green angiography (ICGA) findings, therapy regimen, and outcome were collected from the Massachusetts Eye Research and Surgery Institution (MERSI) database from 2006 to 2017. RESULTS: Fourteen patients (22 eyes) were identified. Twelve had granulomatosis with polyangiitis (GPA) and 1 each had microscopic polyangiitis (MPA) and eosinophilic granulomatosis with polyangiitis (EGPA). FA showed that AAV affected small-to-medium-size retinal vessels. Seven cases (50%) had both vein/venule and artery/arteriole involvement. Four cases co-presented with choroidal vasculitis. All of them failed various immunomodulatory therapies prior to referral to MERSI. Six patients received rituximab plus prednisone as their final therapy and 5 of them achieved remission. Four patients who failed cyclophosphamide previously were induced into remission by rituximab. Patients were followed for 33.4 ± 25.5 (range 6-84) months. Nine of 14 patients (64.3%) achieved remission at their latest visit. Seventeen of 22 eyes (77.3%) met the criteria for a good (≥20/40) visual outcome. CONCLUSION: The majority of patients enjoyed a good visual outcome and achieved remission after aggressive treatment. Rituximab should be considered as an initial treatment for patients with refractory retinal vasculitis associated with AAV.
Löfqvist CA, Najm S, Hellgren G, Engström E, Sävman K, Nilsson AK, Andersson MX, Hård A-L, Smith LEH, Hellström A. Association of Retinopathy of Prematurity With Low Levels of Arachidonic Acid: A Secondary Analysis of a Randomized Clinical Trial. JAMA Ophthalmol 2018;136(3):271-277.Abstract
Importance: Mice with oxygen-induced retinopathy fed matched diets except for ω-3 long-chain polyunsaturated fatty acids (LC-PUFAs) vs ω-6 LC-PUFAs demonstrate relative antiangiogenic and neuroprotective associations of ω-3 LC-PUFAs. However, supplementing preterm infants with LC-PUFAs has been inconsistent in reducing major preterm morbidities. However, few studies measured serum lipid levels after supplementation. Objective: To examine the associated risk of retinopathy of prematurity (ROP) from the levels of circulating ω-3 and ω-6 LC-PUFAs. Design, Setting, and Participants: This longitudinal clinical study was a further analysis of serum lipid levels from a randomized controlled trial cohort of 90 infants born at gestational age (GA) less than 28 weeks. From April 4, 2013, to September 22, 2015, cord blood samples, followed by venous blood samples, were obtained at birth and at 1, 7, 14, and 28 days after birth and then at postmenstrual age (PMA) 32, 36, and 40 weeks at the neonatal intensive care unit at Sahlgrenska University Hospital in Göteborg, Sweden. Main Outcomes and Measures: Serum phospholipid fatty acids were transmethylated and measured by gas chromatography-mass spectrometry. Mann-Whitney test, logistic regression Spearman rank correlation, and receiver operating characteristic curve analysis were used to compare differences between infants with no ROP and infants who developed ROP. Results: Serum levels from 78 infants (43 male [55%]; mean [SD] GA, 25.5 [1.4] weeks) with a known ROP outcome were evaluated. Lower area under the curve (AUC) of arachidonic acid (AA) (20:4 ω-6) was seen in infants with a later diagnosis of ROP compared with infants with no ROP in the first month of life (mean, 34.05 [95% CI, 32.10-36.00] vs 37.15 [95% CI, 34.85-39.46]; P < .05). In addition, lower levels of AA at 32 weeks' PMA were seen in infants with later severe ROP compared with in those without ROP (mean, 7.06 [95% CI, 6.60-7.52] vs 8.74 [95% CI, 7.80-9.67]; P < .001). In logistic modeling, low postnatal serum levels of AA and GA at birth identified with a sensitivity greater than 90% of infants who developed ROP. Conclusions and Relevance: Low postnatal levels of the ω-6 LC-PUFAs (AA) are strongly associated with ROP development. Evaluating postnatal AA fraction after birth in addition to GA may be useful for ROP prediction. Trial Registration: Identifier: NCT02760472.
Guo C, Cho K-S, Li Y, Tchedre K, Antolik C, Ma J, Chew J, Utheim TP, Huang XA, Yu H, Malik MTA, Anzak N, Chen DF. IGFBPL1 Regulates Axon Growth through IGF-1-mediated Signaling Cascades. Sci Rep 2018;8(1):2054.Abstract
Activation of axonal growth program is a critical step in successful optic nerve regeneration following injury. Yet the molecular mechanisms that orchestrate this developmental transition are not fully understood. Here we identified a novel regulator, insulin-like growth factor binding protein-like 1 (IGFBPL1), for the growth of retinal ganglion cell (RGC) axons. Expression of IGFBPL1 correlates with RGC axon growth in development, and acute knockdown of IGFBPL1 with shRNA or IGFBPL1 knockout in vivo impaired RGC axon growth. In contrast, administration of IGFBPL1 promoted axon growth. Moreover, IGFBPL1 bound to insulin-like growth factor 1 (IGF-1) and subsequently induced calcium signaling and mammalian target of rapamycin (mTOR) phosphorylation to stimulate axon elongation. Blockage of IGF-1 signaling abolished IGFBPL1-mediated axon growth, and vice versa, IGF-1 required the presence of IGFBPL1 to promote RGC axon growth. These data reveal a novel element in the control of RGC axon growth and suggest an unknown signaling loop in the regulation of the pleiotropic functions of IGF-1. They suggest new therapeutic target for promoting optic nerve and axon regeneration and repair of the central nervous system.
Chen X, Liu Y, Zhang Y, Kam WR, Pasquale LR, Sullivan DA. Impact of aromatase absence on murine intraocular pressure and retinal ganglion cells. Sci Rep 2018;8(1):3280.Abstract
We hypothesize that aromatase, an enzyme that regulates estrogen production, plays a significant role in the control of intraocular pressure (IOP) and retinal ganglion cells (RGCs). To begin to test our hypothesis, we examined the impact of aromatase absence, which completely eliminates estrogen synthesis, in male and female mice. Studies were performed with adult, age-matched wild type (WT) and aromatase knockout (ArKO) mice. IOP was measured in a masked fashion in both eyes of conscious mice at 12 and 24 weeks of age. Retinas were obtained and processed for RGC counting with a confocal microscope. IOP levels in both 12- and 24-week old female ArKO mice were significantly higher than those of age- and sex-matched WT controls. The mean increase in IOP was 7.9% in the 12-week-, and 19.7% in the 24-week-old mice, respectively. These changes were accompanied by significant 9% and 7% decreases in RGC numbers in the ArKO female mice, relative to controls, at 12- and 24-weeks, respectively. In contrast, aromatase deficiency did not lead to an increased IOP in male mice. There was a significant reduction in RGC counts in the 12-, but not 24-, week-old male ArKO mice, as compared to their age- and sex-matched WT controls. Overall, our findings show that aromatase inhibition in females is associated with elevated IOP and reduced RGC counts.
Cheng L, Wong LJ, Yan N, Han RC, Yu H, Guo C, Batsuuri K, Zinzuwadia A, Guan R, Cho K-S, Chen DF. Ezh2 does not mediate retinal ganglion cell homeostasis or their susceptibility to injury. PLoS One 2018;13(2):e0191853.Abstract
Epigenetic predisposition is thought to critically contribute to adult-onset disorders, such as retinal neurodegeneration. The histone methyltransferase, enhancer of zeste homolog 2 (Ezh2), is transiently expressed in the perinatal retina, particularly enriched in retinal ganglion cells (RGCs). We previously showed that embryonic deletion of Ezh2 from retinal progenitors led to progressive photoreceptor degeneration throughout life, demonstrating a role for embryonic predisposition of Ezh2-mediated repressive mark in maintaining the survival and function of photoreceptors in the adult. Enrichment of Ezh2 in RGCs leads to the question if Ezh2 also mediates gene expression and function in postnatal RGCs, and if its deficiency changes RGC susceptibility to cell death under injury or disease in the adult. To test this, we generated mice carrying targeted deletion of Ezh2 from RGC progenitors driven by Math5-Cre (mKO). mKO mice showed no detectable defect in RGC development, survival, or cell homeostasis as determined by physiological analysis, live imaging, histology, and immunohistochemistry. Moreover, RGCs of Ezh2 deficient mice revealed similar susceptibility against glaucomatous and acute optic nerve trauma-induced neurodegeneration compared to littermate floxed or wild-type control mice. In agreement with the above findings, analysis of RNA sequencing of RGCs purified from Ezh2 deficient mice revealed few gene changes that were related to RGC development, survival and function. These results, together with our previous report, support a cell lineage-specific mechanism of Ezh2-mediated gene repression, especially those critically involved in cellular function and homeostasis.
Sun D. Visualizing Astrocytes of the Optic Nerve. Methods Mol Biol 2018;1695:269-286.Abstract
Astrocytes make up approximately 30% of all the cells in the mammalian central nervous system. They are not passive, as once thought, but are integral to brain physiology and perform many functions that are important for normal neuronal development and metabolism, synapse formation, synaptic transmission, and in repair following injury/disease. Astrocytes also communicate with neurons, blood vessels, and other types of glial cells. Astrocytes within the optic nerve head region play a key role in glaucomatous axon degeneration. In this chapter, we describe ways in which astrocytes of the optic nerve head can be visualized, beginning with basic immunohistochemical staining methods, to single-cell dye injections and then to transgenic animals. We will also discuss the pros and cons of each method. Many of the methods were initially developed to visualize brain astrocytes; in some cases, the method has translated well to astrocytes of the optic nerve, and in others, it remains unclear.
Carvalho LS, Xiao R, Wassmer SJ, Langsdorf A, Zinn E, Pacouret S, Shah S, Comander JI, Kim LA, Lim L, Vandenberghe LH. Synthetic Adeno-Associated Viral Vector Efficiently Targets Mouse and Nonhuman Primate Retina In Vivo. Hum Gene Ther 2018;29(7):771-784.Abstract
Gene therapy is a promising approach in the treatment of inherited and common complex disorders of the retina. Preclinical and clinical studies have validated the use of adeno-associated viral vectors (AAV) as a safe and efficient delivery vehicle for gene transfer. Retinal pigment epithelium and rods-and to a lesser extent, cone photoreceptors-can be efficiently targeted with AAV. Other retinal cell types however are more challenging targets. The aim of this study was to characterize the transduction profile and efficiency of in silico designed, synthetic Anc80 AAVs for retinal gene transfer. Three Anc80 variants were evaluated for retinal targeting in mice and primates following subretinal delivery. In the murine retina Anc80L65 demonstrated high level of retinal pigment epithelium and photoreceptor targeting with comparable cone photoreceptor affinity compared to other AAVs. Remarkably, Anc80L65 enhanced transduction kinetics with visible expression as early as day 1 and steady state mRNA levels at day 3. Inner retinal tropism of Anc80 variants demonstrated distinct transduction patterns of Müller glia, retinal ganglion cells and inner nuclear layer neurons. Finally, murine findings with Anc80L65 qualitatively translated to the Rhesus macaque in terms of cell targets, levels and onset of expression. Our findings support the use of Anc80L65 for therapeutic subretinal gene delivery.
Fernandez-Godino R, Bujakowska KM, Pierce EA. Changes in extracellular matrix cause RPE cells to make basal deposits and activate the alternative complement pathway. Hum Mol Genet 2018;27(1):147-159.Abstract
The design of efficient therapies for age-related macular degeneration (AMD) is limited by our understanding of the pathogenesis of basal deposits, which form between retinal pigment epithelium (RPE) and Bruch's membrane (BrM) early in disease, and involve activation of the complement system. To investigate the roles of BrM, RPE and complement in an AMD, we generated abnormal extracellular matrix (ECM) using CRISPR-edited ARPE-19 cells. We introduced to these cells the p.R345W mutation in EFEMP1, which causes early-onset macular degeneration. The abnormal ECM binds active complement C3 and causes the formation of basal deposits by normal human fetal (hf)RPE cells. Human fetal RPE (hfRPE) cells grown on abnormal ECM or BrM explants from AMD donors show chronic activation of the alternative complement pathway by excessive deposition of C3b. This process is exacerbated by impaired ECM turnover via increased matrix metalloproteinase-2 activity. The local cleavage of C3 via convertase-independent mechanisms can be a new therapeutic target for early AMD.
Choi HJ, Wang R, Jakobs TC. Single-Cell Dissociation and Characterization in the Murine Retina and Optic Nerve. Methods Mol Biol 2018;1695:311-334.Abstract
Recent technological advances have extended the range of analytic tools to very small samples. It is now possible to assay the transcriptome, and in some cases even the proteome, of single cells reliably. This allows addressing novel questions, such as the genotype/phenotype relationships of single neurons, heterogeneity within individual cells of the same type, or the basis of differential vulnerability to injury. An important prerequisite for these kinds of studies is the ability to isolate well-defined individual cells without contamination by adjacent tissue. In the retina and optic nerve, cells of different types and functions are closely intermingled, limiting the use of standard methods such as laser capture microdissection. Here, we describe a simple method to isolate morphologically intact cells from the retina and the optic nerve and discuss considerations in recognizing and isolating different cell types after dissociation.
Lundgren P, Hård A-L, Wilde Å, Löfqvist C, Smith LEH, Hellström A. Implementing higher oxygen saturation targets reduced the impact of poor weight gain as a predictor for retinopathy of prematurity. Acta Paediatr 2018;107(5):767-773.Abstract
AIM: This study evaluated poor weight gain as a risk factor for infants who required treatment for retinopathy of prematurity (ROP), by comparing those born before and after the implementation of higher oxygen saturation (SpO ) targets at the Queen Silvia Children's Hospital, Gothenburg, Sweden. METHODS: We compared infants born at less than 31 weeks, who were screened and, or, treated for ROP: 127 in 2011-2012 when SpO targets were 88-92% and 142 in 2015-2016 when they were 91-95%. The subjects were reviewed for birth characteristics, weekly weight and ROP treatment. Data were analysed using the weight, insulin-like growth factor 1, neonatal, ROP (WINROP) prediction tool. RESULTS: The 2011-2012 infants who needed ROP treatment (12.6%) had significantly poorer postnatal weight gain than those who did not, but this was not seen in the treated (17.6%) and nontreated ROP groups in 2015-2016. WINROP sensitivity decreased from 87.5% in 2011-12 to 48% in 2015-2016. CONCLUSION: After the SpO target range was increased from 88-92% to 91-95%, postnatal weight gain was no longer a significant risk factor and WINROP lost its ability to predict ROP requiring treatment. Risk factors clearly change as neonatal care develops.