Ocular Genomics Institute

Ocular Genomics InstituteThe Ocular Genomics Institute (OGI) translates genomic medicine into precision ophthalmic care. Via the Genomics Core, the OGI provides clinical genetic diagnostic testing and research services, such as whole exome and whole genome sequencing, SNP-based genotype analyses, and copy number variant analyses. Assistance with analyses of genomic data is provided by the Mass. Eye and Ear Bioinformatics Center. The Gene Transfer Vector Core (GTVC) offers researchers expert advice regarding the design and execution phase of gene therapy experiments, as well as production of research-grade gene therapy reagents. The Grousbeck Gene Therapy Center, which encompasses Dr. Luk Vandenberghe’s research laboratory and the GTVC, is supported by a generous donation from the Grousbeck Family Foundation.

Ocular Genomics Institute

Eric A. Pierce, MD, PhD

Elizabeth Engle, MD
Luk H. Vandenberghe, PhD
Janey L. Wiggs, MD, PhD

See a list of OGI faculty

Visit the OGI website


  • The Genetic Eye Disorder (GEDi) panel: The OGI developed a comprehensive genetic diagnostic test that simultaneously analyzes the coding sequence and selected intronic regions of 250 genes associated with IRD, early-onset glaucoma and optic atrophy, as well as the mitochondrial genome, for likely-pathogenic mutations. Mass. Eye and Ear is the first and only location in Boston and in the northeast to offer this service.
  • A critical role for the complement system in macular degeneration: In a study published in the journal Human Molecular Genetics, OGI researchers reported the unexpected finding that in mice genetically engineered to have an inherited form of macular degeneration, the disease was prevented by turning off the animals’ complement system, a part of the immune system. This is the first report to demonstrate a role for the complement system in an inherited macular degeneration.
  • Complete catalog of the retinal transcriptome: In the journal BMC Genomics, OGI researchers published the most thorough description of gene expression in the human retina reported to date. Almost 30,000 novel exons and over 100 potential novel genes were identified. In total, the newly detected mRNA sequence increased the number of exons identified in the human genome by 3 percent.

Photo credit: Daniel Navarro and Jason Comander, MD, PhD; Image credit: Next Generation Sequencing Slide.

Featured News

Luk Vandenberghe

Lonza to Offer Novel Anc-AAV Gene Therapy Technology Through Exclusive Licensing Agreement with Massachusetts Eye and Ear

September 12, 2016
  • The strategic licensing agreement between Lonza and Massachusetts Eye and Ear® underscores Lonza’s position as a leading AAV manufacturing service provider and offers customers unprecedented technology and services to commercialize next generation gene therapies.
  • The Anc-AAV vector platform has the potential to overcome pre-existing immunity in order to treat more patients compared with other viral vectors currently in development.
  • Anc80, the lead novel Anc-AAV available for sublicensing, is a potent gene therapy vector capable of superior gene expression levels in …
Luk Vandenberghe

Selecta Biosciences obtains exclusive license to proprietary gene therapy vector from Massachusetts Eye and Ear

May 19, 2016

Selecta is licensing Anc80 from Massachusetts Eye and Ear for a rare genetic disease with options on additional pre-specified indications. By combining Anc80 with Selecta’s investigational drug candidate, SVP-Rapamycin (SEL-110), Selecta is seeking to advance a new gene therapy platform designed to avoid several immunogenicity challenges that limit the development of gene therapies today