February 2013

Baxter SL, Pistilli M, Pujari SS, Liesegang TL, Suhler EB, Thorne JE, Foster SC, Jabs DA, Levy-Clarke GA, Nussenblatt RB, Rosenbaum JT, Kempen JH. Risk of choroidal neovascularization among the uveitides. Am J Ophthalmol 2013;156(3):468-477.e2.Abstract
PURPOSE: To evaluate the risk, risk factors, and visual impact of choroidal neovascularization (CNV) in uveitis cases. DESIGN: Retrospective cohort study. METHODS: Standardized medical record review at 5 tertiary centers. RESULTS: Among 15,137 uveitic eyes (8868 patients), CNV was rare in the cases of anterior or intermediate uveitis. Among the 4041 eyes (2307 patients) with posterior uveitis or panuveitis, 81 (2.0%) had CNV at presentation. Risk factors included posterior uveitis in general and specific uveitis syndromes affecting the outer retina-retinal pigment epithelium-choroid interface. Among the 2364 eyes (1357 patients) with posterior uveitis or panuveitis and free of CNV at the time of cohort entry, the cumulative 2-year incidence of CNV was 2.7% (95% confidence interval [CI], 1.8% to 3.5%). Risk factors for incident CNV included currently active inflammation (adjusted hazard ratio [aHR], 2.13; 95% CI, 1.26 to 3.60), preretinal neovascularization (aHR, 3.19; 95% CI, 1.30 to 7.80), and prior diagnosis of CNV in the contralateral eye (aHR, 5.79; 95% CI, 2.77 to 12.09). Among specific syndromes, the incidence was greater in Vogt-Koyanagi-Harada syndrome (aHR, 3.37; 95% CI, 1.52 to 7.46) and punctate inner choroiditis (aHR, 8.67; 95% CI, 2.83 to 26.54). Incident CNV was associated with a 2-line loss of visual acuity (+0.19 logarithm of the minimal angle of resolution units; 95% CI, 0.079 to 0.29) from the preceding visit. CONCLUSIONS: CNV is an uncommon complication of uveitis associated with visual impairment that occurs more commonly in forms affecting the outer retina-retinal pigment epithelium-choroid interface, during periods of inflammatory activity, in association with preretinal neovascularization, and in second eyes of patients with unilateral CNV. Because CNV is treatable, a systematic approach to early detection in high-risk patients may be appropriate.
Rahimi Darabad R, Suzuki T, Richards SM, Jensen RV, Jakobiec FA, Zakka FR, Liu S, Sullivan DA. Influence of aromatase absence on the gene expression and histology of the mouse meibomian gland. Invest Ophthalmol Vis Sci 2013;54(2):987-98.Abstract
PURPOSE: We hypothesize that aromatase, an enzyme that controls estrogen biosynthesis, plays a major role in the sex-related differences of the meibomian gland. To begin to test this hypothesis, we examined the influence of aromatase absence, which completely eliminates estrogen production, on glandular gene expression and histology in male and female mice. METHODS: Meibomian glands were obtained from adult, age-matched wild-type (WT) and aromatase knockout (ArKO) mice. Tissues were processed for histology or the isolation of total RNA, which was analyzed for differentially expressed mRNAs by using microarrays. RESULTS: Our results show that aromatase significantly influences the expression of more than a thousand genes in the meibomian gland. The nature of this effect is primarily sex-dependent. In addition, the influence of aromatase on sex-related differences in gene expression is predominantly genotype-specific. However, many of the sex-related variations in biological process, molecular function, and cellular component ontologies, as well as in KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, are remarkably similar between WT and ArKO mice. The loss of aromatase activity has no obvious effect on the histology of meibomian glands in male or female mice. CONCLUSIONS: Our findings demonstrate that aromatase has a significant impact on gene expression in the meibomian gland. The nature of this influence is sex-dependent and genotype-specific; however, many of the sex-related variations in gene ontologies and KEGG pathways are similar between WT and ArKO mice. Consequently, it appears that aromatase, and by extension estrogen, do not play a major role in the sex-related differences of the mouse meibomian gland.
Gilmore MS, Lebreton F, van Schaik W. Genomic transition of enterococci from gut commensals to leading causes of multidrug-resistant hospital infection in the antibiotic era. Curr Opin Microbiol 2013;16(1):10-6.Abstract
The enterococci evolved over eons as highly adapted members of gastrointestinal consortia of a wide variety of hosts, but for reasons that are not entirely clear, emerged in the 1970s as leading causes of multidrug resistant hospital infection. Hospital-adapted pathogenic isolates are characterized by the presence of multiple mobile elements conferring antibiotic resistance, as well as pathogenicity islands, capsule loci and other variable traits. Enterococci may have been primed to emerge among the vanguard of antibiotic resistant strains because of their occurrence in the GI tracts of insects and simple organisms living and feeding on organic matter that is colonized by antibiotic resistant, antibiotic producing micro-organisms. In response to the opportunity to inhabit a new niche--the antibiotic treated hospital patient--the enterococcal genome is evolving in a pattern characteristic of other bacteria that have emerged as pathogens because of opportunities stemming from anthropogenic change.
Beier KT, Saunders AB, Oldenburg IA, Sabatini BL, Cepko CL. Vesicular stomatitis virus with the rabies virus glycoprotein directs retrograde transsynaptic transport among neurons in vivo. Front Neural Circuits 2013;7:11.Abstract
Defining the connections among neurons is critical to our understanding of the structure and function of the nervous system. Recombinant viruses engineered to transmit across synapses provide a powerful approach for the dissection of neuronal circuitry in vivo. We recently demonstrated that recombinant vesicular stomatitis virus (VSV) can be endowed with anterograde or retrograde transsynaptic tracing ability by providing the virus with different glycoproteins. Here we extend the characterization of the transmission and gene expression of recombinant VSV (rVSV) with the rabies virus glycoprotein (RABV-G), and provide examples of its activity relative to the anterograde transsynaptic tracer form of rVSV. rVSV with RABV-G was found to drive strong expression of transgenes and to spread rapidly from neuron to neuron in only a retrograde manner. Depending upon how the RABV-G was delivered, VSV served as a polysynaptic or monosynaptic tracer, or was able to define projections through axonal uptake and retrograde transport. In animals co-infected with rVSV in its anterograde form, rVSV with RABV-G could be used to begin to characterize the similarities and differences in connections to different areas. rVSV with RABV-G provides a flexible, rapid, and versatile tracing tool that complements the previously described VSV-based anterograde transsynaptic tracer.
Ding J, Sackmann-Sala L, Kopchick JJ. Mouse models of growth hormone action and aging: a proteomic perspective. Proteomics 2013;13(3-4):674-85.Abstract
Growth hormone (GH) is a protein secreted by the anterior pituitary and circulates throughout the body to exert important actions on growth and metabolism. GH stimulates the secretion of insulin-like growth factor-I (IGF-I) that mediates some of the growth promoting actions of GH. The GH/IGF-I axis has recently been recognized as important in terms of longevity in organisms ranging from Caenorhabditis elegans to mice. For example, GH transgenic mice possess short lifespans while GH receptor null (GHR-/-) mice have extended longevity. Thus, the actions of GH (or IGF-I) or lack thereof impact the aging process. In this review, we summarize the proteomic analyses of plasma and white adipose tissue in these two mouse models of GH action, i.e. GH transgenic and GHR-/- mice. At the protein level, we wanted to establish novel plasma biomarkers of GH action as a function of age and to determine differences in adipose tissue depots. We have shown that these proteomic approaches have not only confirmed several known physiological actions of GH, but also resulted in novel protein biomarkers and targets that may be indicative of the aging process and/or new functions of GH. These results may generate new directions for GH and/or aging research.
Stein-Streilein J. Mechanisms of immune privilege in the posterior eye. Int Rev Immunol 2013;32(1):42-56.Abstract
Immune privilege protects vital organs and their functions from the destructive interference of inflammation. Because the eye is easily accessible for surgical manipulation and for assessing and imaging the outcomes, the eye has been a major tissue for the study of immune privilege. Here, we focus on the immune regulatory mechanisms in the posterior eye, in part, because loss of immune privilege may contribute to development of certain retinal diseases in the aging population. We begin with a background in immune privilege and then focus on the select regulatory mechanisms that have been studied in the posterior eye. The review includes a description of the immunosuppressive environment, regulatory surface molecules expressed by cells in the eye, types of cells that participate in immune regulation and finally, discusses animal models of retinal laser injury in the context of mechanisms that overcome immune privilege.
Pasquale LR, Loomis SJ, Kang JH, Yaspan BL, Abdrabou W, Budenz DL, Chen TC, Delbono E, Friedman DS, Gaasterland D, Gaasterland T, Grosskreutz CL, Lee RK, Lichter PR, Liu Y, McCarty CA, Moroi SE, Olson LM, Realini T, Rhee DJ, Schuman JS, Singh K, Vollrath D, Wollstein G, Zack DJ, Allingham RR, Pericak-Vance MA, Weinreb RN, Zhang K, Hauser MA, Richards JE, Haines JL, Wiggs JL. CDKN2B-AS1 genotype-glaucoma feature correlations in primary open-angle glaucoma patients from the United States. Am J Ophthalmol 2013;155(2):342-353.e5.Abstract
PURPOSE: To assess the association between single nucleotide polymorphisms (SNPs) of the gene region containing cyclin-dependent kinase inhibitor 2B antisense noncoding RNA (CDKN2B-AS1) and glaucoma features among primary open-angle glaucoma (POAG) patients. DESIGN: Retrospective observational case series. METHODS: We studied associations between 10 CDKN2B-AS1 SNPs and glaucoma features among 976 POAG cases from the Glaucoma Genes and Environment (GLAUGEN) study and 1971 cases from the National Eye Institute Glaucoma Human Genetics Collaboration (NEIGHBOR) consortium. For each patient, we chose the feature from the eye with the higher value. We created cohort-specific multivariable models for glaucoma features and then meta-analyzed the results. RESULTS: For 9 of the 10 protective CDKN2B-AS1 SNPs with minor alleles associated with reduced disease risk (eg, the G allele at rs2157719), POAG patients carrying these minor alleles had smaller cup-to-disc ratio (0.05 units smaller per G allele at diagnosis; 95% CI: -0.08, -0.03; P = 6.23E-05) despite having higher intraocular pressure (IOP) (0.70 mm Hg higher per G allele at DNA collection; 95% CI: 0.40, 1.00; P = 5.45E-06). For the 1 adverse rs3217992 SNP with minor allele A associated with increased disease risk, POAG patients with A alleles had larger cup-to-disc ratio (0.05 units larger per A allele at diagnosis; 95% CI: 0.02, 0.07; P = 4.74E-04) despite having lower IOP (-0.57 mm Hg per A allele at DNA collection; 95% CI: -0.84, -0.29; P = 6.55E-05). CONCLUSION: Alleles of CDKN2B-AS1 SNPs, which influence risk of developing POAG, also modulate optic nerve degeneration among POAG patients, underscoring the role of CDKN2B-AS1 in POAG.
Lye-Barthel M, Sun D, Jakobs TC. Morphology of astrocytes in a glaucomatous optic nerve. Invest Ophthalmol Vis Sci 2013;54(2):909-17.Abstract
PURPOSE: To establish the morphologic changes of astrocytes in the glial lamina of glaucomatous mice. METHODS: A strain of mice that expresses GFP in individual astrocytes (hGFAPpr-GFP) was crossed into the DBA/2J strain that develops glaucoma. In the resulting strain (D2.hGFAPpr-GFP) we assessed the severity of glaucoma by staining the retina for neurofilaments and counting the neurons of the retinal ganglion cell layer. We observed the morphology of astrocytes in the glial lamina of the optic nerves. RESULTS: D2.hGFAPpr-GFP mice developed glaucoma in an age-dependent manner. Astrocytes in the glial lamina showed morphologic changes that correlated with the severity of glaucoma. The cells showed thickening of processes from 1.3 ± 0.28 μm in nondiseased animals to 1.71 ± 0.46 μm in eyes with moderate glaucoma and 2.1 ± 0.42 μm in those with severe glaucoma. Their spatial coverage, as determined by their convex polygon area, was reduced in eyes with severe glaucoma. The astrocytes in severely glaucomatous optic nerves also showed simplification of their processes. In 6-month-old mice with no obvious signs of degeneration in the retina, we found astrocytes with appendages growing out of primary astrocyte processes into the axon bundles. This localized hypertrophy of processes was never observed in the hGFAPpr-GFP strain. CONCLUSIONS: Confirming results after optic nerve crush, astrocytes in glaucomatous optic nerves had thickened and simplified processes, and reduced spatial coverage. We also found evidence of localized sprouting of new processes in early stages of the disease, before detectable changes in ganglion cell number.
Jakobiec FA, Zakka FR, Perry LP. The cytologic composition of dacryops: an immunohistochemical investigation of 15 lesions compared to the normal lacrimal gland. Am J Ophthalmol 2013;155(2):380-396.e1.Abstract
PURPOSE: To define the cytologic composition of the double-layered epithelial lining of dacryops (lacrimal duct cyst), improve histopathologic diagnosis, and better understand pathogenesis. DESIGN: Clinicopathologic retrospective study with immunohistochemical studies of 15 lesions compared with normal lacrimal gland. METHODS: Clinical data from 14 patients were reviewed and microscopy was performed with routine stains and immunohistochemical probes for epithelial membrane antigen (EMA), gross cystic disease fluid protein-15 (GCDFP-15), cytokeratin 7 (CK7), and smooth muscle actin (SMA). RESULTS: The major lacrimal gland was involved in 13 lesions; 2 lesions arose in an accessory gland of Krause. One case was bilateral; the average age of the patients was 50.7 years. Neither visual acuity nor motility was disturbed. No lesion was discovered to have recurred after excision. Microscopically, in all dacryops specimens goblet cells and luminal pseudoapocrine apical cytoplasmic projections were identified. Lacrimal acinar cells immunoreacted with GCDFP-15 and CK7, whereas the normal ducts and the epithelium of the dacryops lesions reacted diffusely only with CK7. SMA-positive myoepithelial cells were found in the acini but not in the normal ducts or dacryops epithelium. CONCLUSIONS: Negative GCDFP-15 staining ruled out apocrine metaplasia in dacryops. Normal ducts and dacryops showed no immunohistochemical evidence for the presence of myoepithelial cells. Pathogenetic theories of dacryops that implicate a failure of ductular "neuromuscular" contractility must therefore be revised. A dysfunction of the rich neural plexus around the ductules may play a role in the development of dacryops in conjunction with periductular inflammation and induced scarring.