January 2018

Salongcay RP, Silva PS. The Role of Teleophthalmology in the Management of Diabetic Retinopathy. Asia Pac J Ophthalmol (Phila) 2018;Abstract
The emergence of diabetes as a global epidemic is accompanied by the rise in diabetes‑related retinal complications. Diabetic retinopathy, if left undetected and untreated, can lead to severe visual impairment and affect an individual's productivity and quality of life. Globally, diabetic retinopathy remains one of the leading causes of visual loss in the working‑age population. Teleophthalmology for diabetic retinopathy is an innovative means of retinal evaluation that allows identification of eyes at risk for visual loss, thereby preserving vision and decreasing the overall burden to the health care system. Numerous studies worldwide have found teleophthalmology to be a reliable and cost‑efficient alternative to traditional clinical examinations. It has reduced barriers to access to specialized eye care in both rural and urban communities. In teleophthalmology applications for diabetic retinopathy, it is critical that standardized protocols in image acquisition and evaluation are used to ensure low image ungradable rates and maintain the quality of images taken. Innovative imaging technology such as ultrawide field imaging has the potential to provide significant benefit with integration into teleophthalmology programs. Teleophthalmology programs for diabetic retinopathy rely on a comprehensive and multidisciplinary approach with partnerships across specialties and health care professionals to attain wider acceptability and allow evidence‑based eye care to reach a much broader population.
Vazirani J, Nair D, Shanbhag S, Wurity S, Ranjan A, Sangwan V. Limbal Stem Cell Deficiency - Demography And Underlying Causes. Am J Ophthalmol 2018;Abstract
PURPOSE: To determine the demographic features of patients affected by limbal stem cell deficiency (LSCD), and to identify the underlying causes of LSCD DESIGN: Retrospective, multi-center case series SETTING: Two large tertiary care ophthalmology hospitals SUBJECTS: Patients with a diagnosis of LSCD presenting from January 1, 2005 to December 31, 2014 METHODS: Records of patients with a clinical diagnosis of LSCD were reviewed. Demographic details and clinical features at presentation, as well as the underlying cause of LSCD (if identified) were noted. Descriptive statistical analysis and chart preparation were done. MAIN OUTCOME MEASURES: Type of LSCD (unilateral or bilateral), age and sex of patients, extent of LSCD (clock hours of limbus involved) and underlying cause of LSCD RESULTS: We found 1331 patients with LSCD in the ten year period under study. Unilateral LSCD was more common (791 patients) than bilateral LSCD (540 patients). Out of 1331 patients, 875 (65.74%) were male. The median age of patients was 24 years. Extent of LSCD could be determined in 1849 eyes, of which 1239 eyes (67%) had total LSCD. The underlying cause of LSCD could be identified in 1512 eyes. In cases of unilateral LSCD, ocular surface burns was the commonest identifiable cause ( 83.73%). The leading identifiable causes of bilateral LSCD were ocular surface burns (29.95%), allergic conjunctivitis (29.48%), Stevens Johnson syndrome (SJS) or toxic epidermal necrolysis (TEN) (23.11%), aniridia (9.43%) and mucous membrane pemphigoid (3.54%). Lime ("chuna") injury was responsible for ocular surface burns in 352 (62.08%) out of 567 cases in which the agent was identified. CONCLUSIONS: In our study, unilateral LSCD was more common than bilateral LSCD. Young males were commonly affected, with a majority of eyes suffering from total LSCD. Overall, ocular surface burns are the leading cause of LSCD.Unilateral and bilateral LSCD had a markedly different distribution of causes, necessitating different approaches to management.
King R, Struebing FL, Li Y, Wang J, Koch AA, Cooke Bailey JN, Gharahkhani P, Gharahkhani P, Gharahkhani P, Macgregor S, Allingham RR, Hauser MA, Wiggs JL, Geisert EE. Genomic locus modulating corneal thickness in the mouse identifies POU6F2 as a potential risk of developing glaucoma. PLoS Genet 2018;14(1):e1007145.Abstract
Central corneal thickness (CCT) is one of the most heritable ocular traits and it is also a phenotypic risk factor for primary open angle glaucoma (POAG). The present study uses the BXD Recombinant Inbred (RI) strains to identify novel quantitative trait loci (QTLs) modulating CCT in the mouse with the potential of identifying a molecular link between CCT and risk of developing POAG. The BXD RI strain set was used to define mammalian genomic loci modulating CCT, with a total of 818 corneas measured from 61 BXD RI strains (between 60-100 days of age). The mice were anesthetized and the eyes were positioned in front of the lens of the Phoenix Micron IV Image-Guided OCT system or the Bioptigen OCT system. CCT data for each strain was averaged and used to QTLs modulating this phenotype using the bioinformatics tools on GeneNetwork (www.genenetwork.org). The candidate genes and genomic loci identified in the mouse were then directly compared with the summary data from a human POAG genome wide association study (NEIGHBORHOOD) to determine if any genomic elements modulating mouse CCT are also risk factors for POAG.This analysis revealed one significant QTL on Chr 13 and a suggestive QTL on Chr 7. The significant locus on Chr 13 (13 to 19 Mb) was examined further to define candidate genes modulating this eye phenotype. For the Chr 13 QTL in the mouse, only one gene in the region (Pou6f2) contained nonsynonymous SNPs. Of these five nonsynonymous SNPs in Pou6f2, two resulted in changes in the amino acid proline which could result in altered secondary structure affecting protein function. The 7 Mb region under the mouse Chr 13 peak distributes over 2 chromosomes in the human: Chr 1 and Chr 7. These genomic loci were examined in the NEIGHBORHOOD database to determine if they are potential risk factors for human glaucoma identified using meta-data from human GWAS. The top 50 hits all resided within one gene (POU6F2), with the highest significance level of p = 10-6 for SNP rs76319873. POU6F2 is found in retinal ganglion cells and in corneal limbal stem cells. To test the effect of POU6F2 on CCT we examined the corneas of a Pou6f2-null mice and the corneas were thinner than those of wild-type littermates. In addition, these POU6F2 RGCs die early in the DBA/2J model of glaucoma than most RGCs. Using a mouse genetic reference panel, we identified a transcription factor, Pou6f2, that modulates CCT in the mouse. POU6F2 is also found in a subset of retinal ganglion cells and these RGCs are sensitive to injury.
Kaochar S, Dong J, Torres M, Rajapakshe K, Nikolos F, Davis CM, Ehli EA, Coarfa C, Mitsiades N, Poulaki V. ICG-001 Exerts Potent Anticancer Activity Against Uveal Melanoma Cells. Invest Ophthalmol Vis Sci 2018;59(1):132-143.Abstract
Purpose: Uveal melanoma (UM) is uniformly refractory to all available systemic chemotherapies, thus creating an urgent need for novel therapeutics. In this study, we investigated the sensitivity of UM cells to ICG-001, a small molecule reported to suppress the Wnt/β-catenin-mediated transcriptional program. Methods: We used a panel of UM cell lines to examine the effects of ICG-001 on cellular proliferation, migration, and gene expression. In vivo efficacy of ICG-001 was evaluated in a UM xenograft model. Results: ICG-001 exerted strong antiproliferative activity against UM cells, leading to cell cycle arrest, apoptosis, and inhibition of migration. Global gene expression profiling revealed strong suppression of genes associated with cell cycle proliferation, DNA replication, and G1/S transition. Gene set enrichment analysis revealed that ICG-001 suppressed Wnt, mTOR, and MAPK signaling. Strikingly, ICG-001 suppressed the expression of genes associated with UM aggressiveness, including CDH1, CITED1, EMP1, EMP3, SDCBP, and SPARC. Notably, the transcriptomic footprint of ICG-001, when applied to a UM patient dataset, was associated with better clinical outcome. Lastly, ICG-001 exerted anticancer activity against a UM tumor xenograft in mice. Conclusions: Using in vitro and in vivo experiments, we demonstrate that ICG-001 has strong anticancer activity against UM cells and suppresses transcriptional programs critical for the cancer cell. Our results suggest that ICG-001 holds promise and should be examined further as a novel therapeutic agent for UM.
Eslani M, Putra I, Shen X, Hamouie J, Tadepalli A, Anwar KN, Kink JA, Ghassemi S, Agnihotri G, Reshetylo S, Mashaghi A, Dana R, Hematti P, Djalilian AR. Cornea-Derived Mesenchymal Stromal Cells Therapeutically Modulate Macrophage Immunophenotype and Angiogenic Function. Stem Cells 2018;36(5):775-784.Abstract
Macrophages are crucial drivers of inflammatory corneal neovascularization and thus are potential targets for immunomodulatory therapies. We hypothesized that therapeutic use of cornea-derived mesenchymal stromal cells (cMSCs) may alter the function of macrophages. We found that cMSCs can modulate the phenotype and angiogenic function of macrophages. In vitro, cMSCs induce apoptosis of macrophages while preferentially promoting a distinct CD14 CD16 CD163 CD206 immunophenotype that has significantly reduced angiogenic effects based on in vitro angiogenesis assays. In vivo, application of cMSCs to murine corneas after injury leads to reduced macrophage infiltration and higher expression of CD206 in macrophages. Macrophages cocultured ("educated") by cMSCs express significantly higher levels of anti-angiogenic and anti-inflammatory factors compared with control macrophages. In vivo, injured corneas treated with cMSC-educated macrophages demonstrate significantly less neovascularization compared with corneas treated with control macrophages. Knocking down the expression of pigment epithelial derived factor (PEDF) in cMSCs significantly abrogates its modulating effects on macrophages, as shown by the reduced rate of apoptosis, decreased expression of sFLT-1/PEDF, and increased expression of vascular endothelial growth factor-A in the cocultured macrophages. Similarly, cMSCs isolated from PEDF knockout mice are less effective compared with wild-type cMSCs at inhibiting macrophage infiltration when applied to wild-type corneas after injury. Overall, these results demonstrate that cMSCs therapeutically suppress the angiogenic capacity of macrophages and highlight the role of cMSC secreted PEDF in the modulation of macrophage phenotype and function. Stem Cells 2018;36:775-784.
Tao Y, Huang M, Shu Y, Ruprecht A, Wang H, Tang Y, Vandenberghe LH, Wang Q, Gao G, Kong W-J, Chen Z-Y. Delivery of Adeno-Associated Virus Vectors in Adult Mammalian Inner-Ear Cell Subtypes Without Auditory Dysfunction. Hum Gene Ther 2018;29(4):492-506.Abstract
Hearing loss, including genetic hearing loss, is one of the most common forms of sensory deficits in humans with limited options of treatment. Adeno-associated virus (AAV)-mediated gene transfer has been shown to recover auditory functions effectively in mouse models of genetic deafness when delivered at neonatal stages. However, the mouse cochlea is still developing at those time points, whereas in humans, the newborn inner ears are already fully mature. For effective gene therapy to treat genetic deafness, it is necessary to determine whether AAV-mediated therapy can be equally effective in the fully mature mouse inner ear without causing damage to the inner ear. This study tested several AAV serotypes by canalostomy in adult mice. It is shown that most AAVs transduce the sensory inner hair cells efficiently, but are less efficient at transducing outer hair cells. A subset of AAVs also transduces non-sensory cochlear cell types. Neither the surgical procedure of canalostomy nor the AAV serotypes damage hair cells or impair normal hearing. The studies indicate that canalostomy can be a viable route for safe and efficient gene delivery, and they expand the repertoire of AAVs to target diverse cell types in the adult inner ear.
Kosmidou C, Efstathiou NE, Hoang MV, Notomi S, Konstantinou EK, Hirano M, Takahashi K, Maidana DE, Tsoka P, Young L, Gragoudas ES, Olsen TW, Morizane Y, Miller JW, Vavvas DG. Issues with the Specificity of Immunological Reagents for NLRP3: Implications for Age-related Macular Degeneration. Sci Rep 2018;8(1):461.Abstract
Contradictory data have been presented regarding the implication of the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome in age-related macular degeneration (AMD), the leading cause of vision loss in the Western world. Recognizing that antibody specificity may explain this discrepancy and in line with recent National Institutes of Health (NIH) guidelines requiring authentication of key biological resources, the specificity of anti-NLRP3 antibodies was assessed to elucidate whether non-immune RPE cells express NLRP3. Using validated resources, NLRP3 was not detected in human primary or human established RPE cell lines under multiple inflammasome-priming conditions, including purported NLRP3 stimuli in RPE such as DICER1 deletion and Alu RNA transfection. Furthermore, NLRP3 was below detection limits in ex vivo macular RPE from AMD patients, as well as in human induced pluripotent stem cell (hiPSC)-derived RPE from patients with overactive NLRP3 syndrome (Chronic infantile neurologic cutaneous and articulate, CINCA syndrome). Evidence presented in this study provides new data regarding the interpretation of published results reporting NLRP3 expression and upregulation in RPE and addresses the role that this inflammasome plays in AMD pathogenesis.
Fernandez-Godino R, Bujakowska KM, Pierce EA. Changes in extracellular matrix cause RPE cells to make basal deposits and activate the alternative complement pathway. Hum Mol Genet 2018;27(1):147-159.Abstract
The design of efficient therapies for age-related macular degeneration (AMD) is limited by our understanding of the pathogenesis of basal deposits, which form between retinal pigment epithelium (RPE) and Bruch's membrane (BrM) early in disease, and involve activation of the complement system. To investigate the roles of BrM, RPE and complement in an AMD, we generated abnormal extracellular matrix (ECM) using CRISPR-edited ARPE-19 cells. We introduced to these cells the p.R345W mutation in EFEMP1, which causes early-onset macular degeneration. The abnormal ECM binds active complement C3 and causes the formation of basal deposits by normal human fetal (hf)RPE cells. Human fetal RPE (hfRPE) cells grown on abnormal ECM or BrM explants from AMD donors show chronic activation of the alternative complement pathway by excessive deposition of C3b. This process is exacerbated by impaired ECM turnover via increased matrix metalloproteinase-2 activity. The local cleavage of C3 via convertase-independent mechanisms can be a new therapeutic target for early AMD.
Choi HJ, Wang R, Jakobs TC. Single-Cell Dissociation and Characterization in the Murine Retina and Optic Nerve. Methods Mol Biol 2018;1695:311-334.Abstract
Recent technological advances have extended the range of analytic tools to very small samples. It is now possible to assay the transcriptome, and in some cases even the proteome, of single cells reliably. This allows addressing novel questions, such as the genotype/phenotype relationships of single neurons, heterogeneity within individual cells of the same type, or the basis of differential vulnerability to injury. An important prerequisite for these kinds of studies is the ability to isolate well-defined individual cells without contamination by adjacent tissue. In the retina and optic nerve, cells of different types and functions are closely intermingled, limiting the use of standard methods such as laser capture microdissection. Here, we describe a simple method to isolate morphologically intact cells from the retina and the optic nerve and discuss considerations in recognizing and isolating different cell types after dissociation.
Wolkow N, Jakobiec FA, Hatton MP. A Common Procedure With an Uncommon Pathology: Triamcinolone Acetonide Eyelid Injection. Ophthalmic Plast Reconstr Surg 2018;34(3):e72-e73.Abstract
Local corticosteroid injections are frequently employed by ophthalmologists to treat a variety of ocular, periocular, and orbital inflammatory conditions. Triamcinolone acetonide is a slowly dissolving crystalline corticosteroid that is often used for this purpose because of its prolonged anti-inflammatory effect. On occasion, previously injected corticosteroid material persists in tissues longer than anticipated, creating nodules that may masquerade as other disease conditions, or appearing incidentally in excised lesions on histopathologic examination. The histopathologic features of corticosteroid residues are unfamiliar to most ophthalmic pathologists and general pathologists. These features are described herein. Triamcinolone acetonide deposits in the skin appear as pale eosinophilic lakes of acellular frothy material on hematoxylin-eosin staining and are occasionally surrounded by a mild inflammatory reaction.
M Mallery R, Poolman P, J Thurtell M, Full JM, Ledolter J, Kimbrough D, Frohman EM, Frohman TC, Kardon RH. Visual Fixation Instability in Multiple Sclerosis Measured Using SLO-OCT. Invest Ophthalmol Vis Sci 2018;59(1):196-201.Abstract
Purpose: Precise measurements of visual fixation and its instability were recorded during optical coherence tomography (OCT) as a marker of neural network dysfunction in multiple sclerosis (MS), which could be used to monitor disease progression or response to treatment. Methods: A total of 16 MS patients and 26 normal subjects underwent 30 seconds of scanning laser ophthalmoscope (SLO)-based eye tracking during OCT scanning of retinal layer thickness. Study groups consisted of normal eyes, MS eyes without prior optic neuritis (MS wo ON), and MS eyes with prior optic neuritis (MS + ON). Kernel density estimation quantified fixation instability from the distribution of fixation points on the retina. In MS wo ON eyes, fixation instability was compared to other measures of visual and neurologic function. Results: Fixation instability was increased in MS wo ON eyes (0.062 deg2) compared to normal eyes (0.030 deg2, P = 0.015). A further increase was seen for MS + ON eyes (0.11 deg2) compared to MS wo ON (P = 0.04) and normal (P = 0.006) eyes. Fixation instability correlated weakly with ganglion cell layer (GCL) volume and showed no correlation with low-contrast letter acuity, EDSS score, or SDMT score. Conclusions: Fixation instability reflects the integrity of a widespread neural network germane to visual processing and ocular motor control, and is disturbed in MS. Further study of visual fixation, including the contribution of microsaccades to fixation instability, may provide insight into the localization of fixation abnormalities in MS and introduce innovative and easily measured outcomes for monitoring progression and treatment response.
Houston KE, Peli E, Goldstein RB, Bowers AR. Driving With Hemianopia VI: Peripheral Prisms and Perceptual-Motor Training Improve Detection in a Driving Simulator. Transl Vis Sci Technol 2018;7(1):5.Abstract
Purpose: Drivers with homonymous hemianopia (HH) were previously found to have impaired detection of blind-side hazards, yet in many jurisdictions they may obtain a license. We evaluated whether oblique 57Δ peripheral prisms (p-prisms) and perceptual-motor training improved blind-side detection rates. Methods: Patients with HH (n = 11) wore p-prisms for 2 weeks and then received perceptual-motor training (six visits) detecting and touching stimuli in the prism-expanded vision. In a driving simulator, patients drove and pressed the horn upon detection of pedestrians who ran toward the roadway (26 from each side): (1) without p-prisms at baseline; (2) with p-prisms after 2 weeks acclimation but before training; (3) with p-prisms after training; and (4) 3 months later. Results: P-prisms improved blind-side detection from 42% to 56%, which further improved after training to 72% (all P < 0.001). Blind-side timely responses (adequate time to have stopped) improved from 31% without to 44% with p-prisms (P < 0.001) and further improved with training to 55% (P = 0.02). At the 3-month follow-up, improvements from training were maintained for detection (65%; P = 0.02) but not timely responses (P = 0.725). There was wide between-subject variability in baseline detection performance and response to p-prisms. There were no negative effects of p-prisms on vehicle control or seeing-side performance. Conclusions: P-prisms improved detection with no negative effects, and training may provide additional benefit. Translational Relevance: In jurisdictions where people with HH are legally driving, these data aid in clinical decision making by providing evidence that p-prisms improve performance without negative effects.
Ebrahimiadib N, Hernandez M, Modjtahedi BS, Roohipoor RC, Foster SC. Atopy in Patients With Ocular Cicatricial Pemphigoid. Cornea 2018;37(4):436-441.Abstract
PURPOSE: To evaluate the presence of atopy in patients with ocular cicatricial pemphigoid (OCP). METHOD: Patient encounters between August 2005 and November 2016 at the Massachusetts Eye Research and Surgery Institute (MERSI) were searched to identify those with biopsy-proven OCP who had concurrent evidence of atopy. RESULTS: There were 230 patients with biopsy-proven OCP. Thirty-three of them were found to have clinical symptoms of atopy (asthma, hay fever, and eczema) and of these, 23 had evidence of atopy in their conjunctival biopsy specimens. All patients were administered immunomodulatory therapy for treatment of their OCP with 20 patients requiring additional antiallergy treatment to control residual atopic ocular symptoms. Among patients who used antiallergy medications, 80% showed improvement in residual symptoms. Rituximab and/or intravenous immunoglobulin is a preferred OCP medication for patients with OCP with some evidence of atopy. CONCLUSIONS: Clinicians should consider the coexistence of atopy in patients with OCP, especially in those with persistent symptoms after initiation of immunomodulatory therapy.

Pages