March 2017

Hafler BP. CLINICAL PROGRESS IN INHERITED RETINAL DEGENERATIONS: GENE THERAPY CLINICAL TRIALS AND ADVANCES IN GENETIC SEQUENCING. Retina 2017;37(3):417-423.Abstract

PURPOSE: Inherited retinal dystrophies are a significant cause of vision loss and are characterized by the loss of photoreceptors and the retinal pigment epithelium (RPE). Mutations in approximately 250 genes cause inherited retinal degenerations with a high degree of genetic heterogeneity. New techniques in next-generation sequencing are allowing the comprehensive analysis of all retinal disease genes thus changing the approach to the molecular diagnosis of inherited retinal dystrophies. This review serves to analyze clinical progress in genetic diagnostic testing and implications for retinal gene therapy. METHODS: A literature search of PubMed and OMIM was conducted to relevant articles in inherited retinal dystrophies. RESULTS: Next-generation genetic sequencing allows the simultaneous analysis of all the approximately 250 genes that cause inherited retinal dystrophies. Reported diagnostic rates range are high and range from 51% to 57%. These new sequencing tools are highly accurate with sensitivities of 97.9% and specificities of 100%. Retinal gene therapy clinical trials are underway for multiple genes including RPE65, ABCA4, CHM, RS1, MYO7A, CNGA3, CNGB3, ND4, and MERTK for which a molecular diagnosis may be beneficial for patients. CONCLUSION: Comprehensive next-generation genetic sequencing of all retinal dystrophy genes is changing the paradigm for how retinal specialists perform genetic testing for inherited retinal degenerations. Not only are high diagnostic yields obtained, but mutations in genes with novel clinical phenotypes are also identified. In the era of retinal gene therapy clinical trials, identifying specific genetic defects will increasingly be of use to identify patients who may enroll in clinical studies and benefit from novel therapies.

Zhang P, Zhu M, Geng-Spyropoulos M, Shardell M, Gonzalez-Freire M, Gudnason V, Eiriksdottir G, Schaumberg D, Van Eyk JE, Ferrucci L, Semba RD. A novel, multiplexed targeted mass spectrometry assay for quantification of complement factor H (CFH) variants and CFH-related proteins 1-5 in human plasma. Proteomics 2017;17(6)Abstract

Age-related macular degeneration (AMD) is a leading cause of visual loss among older adults. Two variants in the complement factor H (CFH) gene, Y402H and I62V, are strongly associated with risk of AMD. CFH is encoded in regulator of complement activation gene cluster in chromosome 1q32, which includes complement factor related (CFHR) proteins, CFHR1 to CFHR5, with high amino acid sequence homology to CFH. Our goal was to build a SRM assay to measure plasma concentrations of CFH variants Y402, H402, I62, and V62, and CFHR1-5. The final assay consisted of 24 peptides and 72 interference-free SRM transition ion pairs. Most peptides showed good linearity over 0.3-200 fmol/μL concentration range. Plasma concentrations of CFH variants and CFHR1-5 were measured using the SRM assay in 344 adults. Plasma CFH concentrations (mean, SE in μg/mL) by inferred genotype were: YY402, II62 (170.1, 31.4), YY402, VV62 (188.8, 38.5), HH402, VV62 (144.0, 37.0), HY402, VV62 (164.2, 42.3), YY402, IV62 (194.8, 36.8), HY402, IV62 (181.3, 44.7). Mean (SE) plasma concentrations of CFHR1-5 were 1.63 (0.04), 3.64 (1.20), 0.020 (0.001), 2.42 (0.18), and 5.49 (1.55) μg/mL, respectively. This SRM assay should facilitate the study of the role of systemic complement and risk of AMD.

Bouffard MA, Nathavitharana RR, Yassa DS, Torun N. Re-Treatment With Ethambutol After Toxic Optic Neuropathy. J Neuroophthalmol 2017;37(1):40-42.Abstract

There are no data in the literature regarding the safety of re-treatment with ethambutol for recurrent mycobacterial infection after prior ethambutol-induced optic neuropathy. We describe a patient who developed optic neuropathy attributed to ethambutol, recovered fully after drug withdrawal, and tolerated a 14-month long re-treatment 10 years later without developing recurrent optic neuropathy.

Jakobiec FA, Stagner AM, Eagle RC, Lally SE, Krane JF. Unusual pleomorphic adenoma of the lacrimal Gland: Immunohistochemical demonstration of PLAG1 and HMGA2 oncoproteins. Surv Ophthalmol 2017;62(2):219-226.Abstract

Painless low-grade right proptosis with 20/25 visual acuity developed slowly in a 49-year-old woman with a past history of breast cancer. Imaging studies disclosed an oval-to-round superotemporal mass in the right lacrimal fossa without bone erosion. Excisional biopsy revealed a pseudoencapsulated, bosselated tumor with a spindled, hypocellular, and heavily periodic acid Schiff-positive stroma constituted of abundant basement membrane material and collagen. Scattered lumens and focal cribriform cellular clusters were present in the peripheries of several of the lobules. Immunohistochemistry showed epithelial membrane antigen+ and cytokeratin (CK) 7+ in many small luminal structures. The spindled cells were calponin+, CK5/6+, CK14+, and p63+, confirming their myoepithelial nature. The Ki67 proliferation index was 2-3%, and upregulation of nuclear p53, a tumor suppressor gene product which may be aberrantly overexpressed in malignancy, was observed in rare cells. Immunohistochemical probes for HMGA2 and PLAG1 oncoproteins, characteristic of pleomorphic adenoma, were stained intensely and less intensely, respectively. MYB and c-KIT (CD117) were negative, thereby strongly arguing against the diagnosis of adenoid cystic carcinoma. In atypical epithelial tumors of the lacrimal gland, genetic probes identifying distinctive gene translocations or their oncoprotein products complement traditional immunohistochemical biomarkers such as cytokeratins and other structural or secretory molecules. Characteristic genetic abnormalities demonstrated by immunohistochemistry for their upregulated protein products, or by in situ hybridization for translocations, are increasingly being relied on for diagnostic precision.

Aggarwal S, Yamaguchi T, Dana R, Hamrah P. Exophiala phaeomuriformis Fungal Keratitis: Case Report and In Vivo Confocal Microscopy Findings. Eye Contact Lens 2017;43(2):e4-e6.Abstract

PURPOSE: Corneal infections, particularly fungal keratitis due to rare fungal species, pose a diagnostic and therapeutic challenge because of difficulty in identification and varying susceptibility profiles. In this study, we report the first case of fungal keratitis because of Exophiala phaeomuriformis. METHODS: We report the clinical findings and microbial identification techniques of a case of fungal keratitis due to E. phaeomuriformis. An 84-year-old woman presented with redness, pain, and itching in the left eye for 2 weeks. Slit-lamp biomicroscopy revealed one broken suture from previous penetrating keratoplasty (PKP), black infiltrates at the 4-o'clock position, without an overlying epithelial defect and hypopyon. Microbial identification was based cultures on Sabouraud dextrose agar and DNA sequencing and correlations to laser in vivo confocal microscopy (IVCM; Heidelberg Retinal Tomograph 3/Rostock Cornea Module, Heidelberg Engineering) and multiphoton microscopy (Ultima Microscope; Prairie Technologies) images. RESULTS: Slit-lamp biomicroscopy revealed one broken suture from previous PKP, black infiltrates at the 4-o'clock position, without an overlying epithelial defect and hypopyon. Based on a clinical suspicion of fungal keratitis, antifungals and fortified antibiotics were started. However, the patient did not respond to therapy and required urgent PKP. After surgery, the patient was maintained on topical and systemic voriconazole and also topical 2% cyclosporine for 5 months because of possibility of scleral involvement noticed during surgery. At the end of the treatment period, her vision improved from hand motion to 20/40, with no recurrence observed in a follow-up period of 1 year. Results of diagnostic tests were supported by fungal elements in stroma on IVCM. Culture from the infiltrate grew black yeast. DNA sequencing led to the diagnosis of E. phaeomuriformis keratitis. Antifungal susceptibility testing revealed sensitivity to voriconazole. CONCLUSION: This is, to our knowledge, the first reported case of E. phaeomuriformis fungal keratitis. Diagnostic testing included slit-lamp biomicroscopy, which revealed pigmented infiltrates, culture plates grew black yeast, microscopy showed branched fungal hyphae with budding conidia, and physiological features showed tolerance to high temperatures, nitrate assimilation, and ribosomal DNA sequencing. Collectively, these tests demonstrate unique features seen for this microorganism. High suspicion should be kept with pigmented infiltrates and with dark yeast on culture plates. Prompt and aggressive medical management with voriconazole or therapeutic PKP in nonresponsive cases is essential to prevent irreversible loss of vision.

Grob SR, Campbell AA, Gross A, Cestari DM. Hemorrhage Within the Optic Nerve From a Cavernous Hemangioma of the Optic Disc. J Neuroophthalmol 2015;35(3):277-9.Abstract

A 49-year-old woman with a known right optic disc cavernous hemangioma experienced pain with eye movements and worsening of a superior visual field defect. While she retained 20/20 visual acuity in each eye, findings on magnetic resonance imaging were consistent with a hemorrhage in the anterior portion of the right intraorbital optic nerve. Her visual function stabilized spontaneously. We are unaware of previous reports of hemorrhage into the optic nerve from a cavernous hemangioma of the optic disc.

Pages