Advances in Neuroscience, Not Devices, Will Determine the Effectiveness of Visual Prostheses

Date Published:

2021 May 19

Abstract:

Background: Innovations in engineering and neuroscience have enabled the development of sophisticated visual prosthetic devices. In clinical trials, these devices have provided visual acuities as high as 20/460, enabled coarse navigation, and even allowed for reading of short words. However, long-term commercial viability arguably rests on attaining even better vision and more definitive improvements in tasks of daily living and quality of life. Purpose: Here we review technological and biological obstacles in the implementation of visual prosthetics. Conclusions: Research in the visual prosthetic field has tackled significant technical challenges, including biocompatibility, signal spread through neural tissue, and inadvertent activation of passing axons; however, significant gaps in knowledge remain in the realm of neuroscience, including the neural code of vision and visual plasticity. We assert that further optimization of prosthetic devices alone will not provide markedly improved visual outcomes without significant advances in our understanding of neuroscience.

Last updated on 05/31/2021