Chalcomoracin prevents vitreous-induced activation of AKT and migration of retinal pigment epithelial cells

Citation:

Han H, Yang Y, Liu B, Tian J, Dong L, Qi H, Zhu W, Wang J, Lei H. Chalcomoracin prevents vitreous-induced activation of AKT and migration of retinal pigment epithelial cells. J Cell Mol Med 2021;25(19):9102-9111.

Date Published:

2021 Oct

Abstract:

Retinal pigment epithelial (RPE) cells are the major cell type in the epi- or sub-retinal membranes in the pathogenesis of proliferative vitreoretinopathy (PVR), which is a blinding fibrotic eye disease and still short of effective medicine. The purpose of this study is to demonstrate whether Chalocomoracin (CMR), a novel purified compound from fungus-infected mulberry leaves, is able to inhibit vitreous-induced signalling events and cellular responses intrinsic to PVR. Our studies have revealed that the CMR IC50 for ARPE-19 cells is 35.5 μmol/L at 72 hours, and that 5 μmol/L CMR inhibits vitreous-induced Akt activation and p53 suppression; in addition, we have discovered that this chemical effectively blocks vitreous-stimulated proliferation, migration and contraction of ARPE-19 cells, suggesting that CMR is a promising PVR prophylactic.

Last updated on 10/31/2021