The effects of age and cognitive load on peripheral-detection performance

Date Published:

2019 Jan 02

Abstract:

Age-related declines in both peripheral vision and cognitive resources could contribute to the increased crash risk of older drivers. However, it is unclear whether increases in age and cognitive load result in equal detriments to detection rates across all peripheral target eccentricities (general interference effect) or whether these detriments become greater with increasing eccentricity (tunnel effect). In the current study we investigated the effects of age and cognitive load on the detection of peripheral motorcycle targets (at 5°-30° eccentricity) in static images of intersections. We used a dual-task paradigm in which cognitive load was manipulated without changing the complexity of the central (foveal) visual stimulus. Each image was displayed briefly (250 ms) to prevent eye movements. When no cognitive load was present, age resulted in a tunnel effect; however, when cognitive load was high, age resulted in a general interference effect. These findings suggest that tunnel and general interference effects can co-occur and that the predominant effect varies with the level of demand placed on participants' resources. High cognitive load had a general interference effect in both age groups, but the effect attenuated at large target eccentricities (opposite of a tunnel effect). Low cognitive load had a general interference effect in the older but not the younger group, impairing detection of motorcycle targets even at 5° eccentricity, which could present an imminent collision risk in real driving.

Last updated on 02/01/2019