Testosterone Influence on Gene Expression in Lacrimal Glands of Mouse Models of Sjögren Syndrome

Citation:

Morthen MK, Tellefsen S, Richards SM, Lieberman SM, Rahimi Darabad R, Kam WR, Sullivan DA. Testosterone Influence on Gene Expression in Lacrimal Glands of Mouse Models of Sjögren Syndrome. Invest Ophthalmol Vis Sci 2019;60(6):2181-2197.

Date Published:

2019 May 01

Abstract:

Purpose: Sjögren syndrome is an autoimmune disorder that occurs almost exclusively in women and is associated with extensive inflammation in lacrimal tissue, an immune-mediated destruction and/or dysfunction of glandular epithelial cells, and a significant decrease in aqueous tear secretion. We discovered that androgens suppress the inflammation in, and enhance the function of, lacrimal glands in female mouse models (e.g., MRL/MpJ-Tnfrsf6lpr [MRL/lpr]) of Sjögren syndrome. In contrast, others have reported that androgens induce an anomalous immunopathology in lacrimal glands of nonobese diabetic/LtJ (NOD) mice. We tested our hypothesis that these hormone actions reflect unique, strain- and tissue-specific effects, which involve significant changes in the expression of immune-related glandular genes. Methods: Lacrimal glands were obtained from age-matched, adult, female MRL/lpr and NOD mice after treatment with vehicle or testosterone for up to 3 weeks. Tissues were processed for analysis of differentially expressed mRNAs using CodeLink Bioarrays and Affymetrix GeneChips. Data were analyzed with bioinformatics and statistical software. Results: Testosterone significantly influenced the expression of numerous immune-related genes, ontologies, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in lacrimal glands of MRL/lpr and NOD mice. The nature of this hormone-induced immune response was dependent upon the autoimmune strain, and was not duplicated within lacrimal tissues of nonautoimmune BALB/c mice. The majority of immune-response genes regulated by testosterone were of the inflammatory type. Conclusions: Our findings support our hypothesis and indicate a major role for the lacrimal gland microenvironment in mediating androgen effects on immune gene expression.

See also: Cornea, May 2019, All, 2019
Last updated on 06/04/2019