Genomics Publications

Brown EE, Scandura MJ, Mehrotra S, Wang Y, Du J, Pierce EA. Reduced nuclear NAD+ drives DNA damage and subsequent immune activation in the retina. Hum Mol Genet 2021;Abstract
Mutations in NMNAT1, a key enzyme involved in the synthesis of NAD+ in the nucleus, lead to an early onset severe inherited retinal degeneration (IRD). We aimed to understand the role of nuclear NAD+ in the retina and to identify the molecular mechanisms underlying NMNAT1-associated disease, using a mouse model that harbors the p.V9M mutation in Nmnat1 (Nmnat1V9M/V9M). We identified temporal transcriptional reprogramming in the retinas of Nmnat1V9M/V9M mice prior to retinal degeneration, which begins at 4 weeks of age, with no significant alterations in gene expression at 2 weeks of age and over 2600 differentially expressed genes by 3 weeks of age. Expression of the primary consumer of NAD+ in the nucleus, PARP1, an enzyme involved in DNA damage repair and transcriptional regulation, as well as 7 other PARP family enzymes, was elevated in the retinas of Nmnat1V9M/V9M. This was associated with elevated levels of DNA damage, PARP-mediated NAD+ consumption, and migration of Iba1+/CD45+ microglia/macrophages to the subretinal space in the retinas of Nmnat1V9M/V9M mice. These findings suggest that photoreceptor cells are especially sensitive to perturbation of genome homeostasis, and that PARP-mediated cell death may play a role in other genetic forms of IRDs, and potentially other forms of neurodegeneration.
Woodward AM, Feeley MN, Rinaldi J, Argüeso P. CRISPR/Cas9 genome editing reveals an essential role for basigin in maintaining a nonkeratinized squamous epithelium in cornea. FASEB Bioadv 2021;3(11):897-908.Abstract
One of the primary functions of nonkeratinized stratified squamous epithelia is to protect underlying tissues against chemical, microbial, and mechanical insult. Basigin is a transmembrane matrix metalloproteinase inducer commonly overexpressed during epithelial wound repair and cancer but whose physiological significance in normal epithelial tissue has not been fully explored. Here we used a CRISPR/Cas9 system to study the effect of basigin loss in a human cornea model of squamous epithelial differentiation. We find that epithelial cell cultures lacking basigin change shape and fail to produce a flattened squamous layer on the apical surface. This process is associated with the abnormal expression of the transcription factor SPDEF and the decreased biosynthesis of MUC16 and involucrin necessary for maintaining apical barrier function and structural integrity, respectively. Expression analysis of genes encoding tight junction proteins identified a role for basigin in promoting physiological expression of occludin and members of the claudin family. Functionally, disruption of basigin expression led to increased epithelial cell permeability as evidenced by the decrease in transepithelial electrical resistance and increase in rose bengal flux. Overall, these results suggest that basigin plays a distinct role in maintaining the normal differentiation of stratified squamous human corneal epithelium and could have potential implications to therapies targeting basigin function.
Scott HA, Larson A, Rong SS, Mehrotra S, Butcher R, Chao KR, Wiggs J, Place EM, Pierce EA, Bujakowska KM. A Hidden Structural Variation in a Known IRD Gene: A Cautionary Tale of Two New Disease Candidate Genes. Cold Spring Harb Mol Case Stud 2021;Abstract
Rod cone dystrophy (RCD), also known as retinitis pigmentosa, is an inherited condition leading to vision loss, affecting 1/3500 people. Over 270 genes are known to be implicated in the inherited retinal degenerations (IRDs), yet genetic diagnosis for ~30% IRD of patients remains elusive despite advances in sequencing technologies. The goal of this study was to determine the genetic causality in a family with Rod-cone dystrophy (RCD). Family members were given a full ophthalmic exam at the Retinal Service at MEE and consented to genetic testing. Whole exome sequencing (WES) was performed and variants of interest were Sanger validated. Functional assays were conducted in zebrafish along with splicing assays in relevant cell lines to determine the impact on retinal function. WES identified variants in two potential candidate genes that segregated with disease: GNL3 (G Protein Nucleolar 3) c.1187+3A>C and c.1568-8C>A; and PDE4DIP (Phosphodiester 4D Interacting Protein) c.3868G>A (p.Glu1290Lys) and c.4603G>A (p.Ala1535Thr). Both genes were promising candidates based on their retinal involvement (development and interactions with IRD-associated proteins), however the functional assays did not validate either gene. Subsequent WES reanalysis with an updated bioinformatics pipeline and widened search parameters led to the detection of a 94bp duplication in PRPF31 (pre-mRNA Processing Factor 31) c.73_266dup (p.Asp56GlyfsTer33) as the causal variant. Our study demonstrates the importance of thorough functional characterization of new disease candidate genes, and the value of reanalyzing NGS sequence data, which in our case led to identification of a hidden pathogenic variant in a known IRD gene.
Whitman MC, Barry BJ, Robson CD, Facio FM, Van Ryzin C, Chan W-M, Lehky TJ, Thurm A, Zalewski C, King KA, Brewer C, Almpani K, Lee JS, Delaney A, FitzGibbon EJ, Lee PR, Toro C, Paul SM, Abdul-Rahman OA, Webb BD, Jabs EW, Moller HU, Larsen DA, Antony JH, Troedson C, Ma A, Ragnhild G, Wirgenes KV, Tham E, Kvarnung M, Maarup TJ, MacKinnon S, Hunter DG, Collins FS, Manoli I, Engle EC. TUBB3 Arg262His causes a recognizable syndrome including CFEOM3, facial palsy, joint contractures, and early-onset peripheral neuropathy. Hum Genet 2021;140(12):1709-1731.Abstract
Microtubules are formed from heterodimers of alpha- and beta-tubulin, each of which has multiple isoforms encoded by separate genes. Pathogenic missense variants in multiple different tubulin isoforms cause brain malformations. Missense mutations in TUBB3, which encodes the neuron-specific beta-tubulin isotype, can cause congenital fibrosis of the extraocular muscles type 3 (CFEOM3) and/or malformations of cortical development, with distinct genotype-phenotype correlations. Here, we report fourteen individuals from thirteen unrelated families, each of whom harbors the identical NM_006086.4 (TUBB3):c.785G>A (p.Arg262His) variant resulting in a phenotype we refer to as the TUBB3 R262H syndrome. The affected individuals present at birth with ptosis, ophthalmoplegia, exotropia, facial weakness, facial dysmorphisms, and, in most cases, distal congenital joint contractures, and subsequently develop intellectual disabilities, gait disorders with proximal joint contractures, Kallmann syndrome (hypogonadotropic hypogonadism and anosmia), and a progressive peripheral neuropathy during the first decade of life. Subsets may also have vocal cord paralysis, auditory dysfunction, cyclic vomiting, and/or tachycardia at rest. All fourteen subjects share a recognizable set of brain malformations, including hypoplasia of the corpus callosum and anterior commissure, basal ganglia malformations, absent olfactory bulbs and sulci, and subtle cerebellar malformations. While similar, individuals with the TUBB3 R262H syndrome can be distinguished from individuals with the TUBB3 E410K syndrome by the presence of congenital and acquired joint contractures, an earlier onset peripheral neuropathy, impaired gait, and basal ganglia malformations.
Mychaleckyj J, Valo E, Ichimura T, Ahluwalia T, Dina C, Miller R, Shabalin I, Gyorgy B, Cao J, Onengut-Gumuscu S, Satake E, Smiles A, Haukka J, Tregouet D-A, Costacou T, O'Neil K, Paterson A, Forsblom C, Keenan H, Pezzolesi M, Pragnell M, Galecki A, Rich S, Sandholm N, Klein R, Klein B, Susztak K, Orchard T, Korstanje R, King G, Hadjadj S, Rossing P, Bonventre J, Groop P-H, Warram J, Krolewski A. Association of Coding Variants in Hydroxysteroid 17-beta Dehydrogenase 14 (HSD17B14) with Reduced Progression to End Stage Kidney Disease in Type 1 Diabetes. J Am Soc Nephrol 2021;Abstract
BACKGROUND: Rare variants in gene coding regions likely have a greater impact on disease-related phenotypes than common variants through disruption of their encoded protein. We searched for rare variants associated with onset of end stage kidney disease (ESKD) in individuals with type 1 diabetes at advanced kidney disease stage. METHODS: Gene-based exome array analysis of 15,449 genes in 5 large incidence cohorts of individuals with type 1 diabetes and proteinuria were analyzed for survival time-to-ESKD, testing the top gene in a 6th cohort (N=2,372/1,115 events all cohorts) and replicating in two retrospective case-control studies (N=1,072 cases, 752 controls). Deep resequencing of the top associated gene in 5 cohorts confirmed the findings. We performed immunohistochemistry and gene expression experiments in human control and diseased cells, and in mouse ischemia reperfusion and aristolochic acid nephropathy models. RESULTS: Protein coding variants in the hydroxysteroid 17-beta dehydrogenase 14 gene (HSD17B14), predicted to affect protein structure, had a net protective effect against development of ESKD at exome-wide significance (N=4,196; p-value=3.3x10-7). The HSD17B14 gene and encoded enzyme were robustly expressed in healthy human kidney, maximally in proximal tubular cells. Paradoxically, gene and protein expression were attenuated in human diabetic proximal tubules and in mouse kidney injury models. Expressed HSD17B14 gene and protein levels remained low without recovery after 21 days in a murine ischemic reperfusion injury model. Decreased gene expression was found in other chronic kidney disease-associated renal pathologies. CONCLUSIONS: HSD17B14 gene is mechanistically involved in diabetic kidney disease. The encoded sex steroid enzyme is a druggable target, potentially opening a new avenue for therapeutic development.
Sangermano R, Deitch I, Peter VG, Ba-Abbad R, Place EM, Zampaglione E, Wagner NE, Fulton AB, Coutinho-Santos L, Rosin B, Dunet V, AlTalbishi A'a, Banin E, Sousa AB, Neves M, Larson A, Quinodoz M, Michaelides M, Ben-Yosef T, Pierce EA, Rivolta C, Webster AR, Arno G, Sharon D, Huckfeldt RM, Bujakowska KM. Broadening INPP5E phenotypic spectrum: detection of rare variants in syndromic and non-syndromic IRD. NPJ Genom Med 2021;6(1):53.Abstract
Pathogenic variants in INPP5E cause Joubert syndrome (JBTS), a ciliopathy with retinal involvement. However, despite sporadic cases in large cohort sequencing studies, a clear association with non-syndromic inherited retinal degenerations (IRDs) has not been made. We validate this association by reporting 16 non-syndromic IRD patients from ten families with bi-allelic mutations in INPP5E. Additional two patients showed early onset IRD with limited JBTS features. Detailed phenotypic description for all probands is presented. We report 14 rare INPP5E variants, 12 of which have not been reported in previous studies. We present tertiary protein modeling and analyze all INPP5E variants for deleteriousness and phenotypic correlation. We observe that the combined impact of INPP5E variants in JBTS and non-syndromic IRD patients does not reveal a clear genotype-phenotype correlation, suggesting the involvement of genetic modifiers. Our study cements the wide phenotypic spectrum of INPP5E disease, adding proof that sequence defects in this gene can lead to early-onset non-syndromic IRD.
van der Heide C, Goar W, Meyer KJ, Alward WLM, Boese EA, Sears NC, Roos BR, Kwon YH, DeLuca AP, Siggs OM, Gonzaga-Jauregui C, Sheffield VC, Wang K, Stone EM, Mullins RF, Anderson MG, Fan BJ, Ritch R, Craig JE, Wiggs JL, Scheetz TE, Fingert JH. Exome-based investigation of the genetic basis of human pigmentary glaucoma. BMC Genomics 2021;22(1):477.Abstract
BACKGROUND: Glaucoma is a leading cause of visual disability and blindness. Release of iris pigment within the eye, pigment dispersion syndrome (PDS), can lead to one type of glaucoma known as pigmentary glaucoma. PDS has a genetic component, however, the genes involved with this condition are largely unknown. We sought to discover genes that cause PDS by testing cohorts of patients and controls for mutations using a tiered analysis of exome data. RESULTS: Our primary analysis evaluated melanosome-related genes that cause dispersion of iris pigment in mice (TYRP1, GPNMB, LYST, DCT, and MITF). We identified rare mutations, but they were not statistically enriched in PDS patients. Our secondary analyses examined PMEL (previously linked with PDS), MRAP, and 19 other genes. Four MRAP mutations were identified in PDS cases but not in controls (p = 0.016). Immunohistochemical analysis of human donor eyes revealed abundant MRAP protein in the iris, the source of pigment in PDS. However, analysis of MRAP in additional cohorts (415 cases and 1645 controls) did not support an association with PDS. We also did not confirm a link between PMEL and PDS in our cohorts due to lack of reported mutations and similar frequency of the variants in PDS patients as in control subjects. CONCLUSIONS: We did not detect a statistical enrichment of mutations in melanosome-related genes in human PDS patients and we found conflicting data about the likely pathogenicity of MRAP mutations. PDS may have a complex genetic basis that is not easily unraveled with exome analyses.
Godfrey D, Torres A, Heidary G, Zahoor H, Lee A, Berry G, Engle E. A 7-year old female with arthrogryposis multiplex congenita, Duane retraction syndrome, and Marcus Gunn phenomenon due to a ZC4H2 gene mutation: a clinical presentation of the Wieacker-Wolff syndrome. Ophthalmic Genet 2021;42(5):612-614.Abstract
Background: Duane retraction syndrome and arthrogryposis multiplex congenita have an incidence of approximately 1:1500-1:3000 live births. However, the association of these two entities with a Marcus-Gunn might be a rare and, until now, under-recognized clinical presentation of the Wieacker-Wolff Syndrome.Patient and methods: We report a 7-year-old female with dysmorphic features, global developmental delay, arthrogryposis multiplex congenita (AMC), Duane retraction syndrome (DRS), and unilateral Marcus Gunn jaw winking.Results: Whole Exome Sequencing showed a de novo premature stop codon in ZC4H2. Extensive genetic and metabolic work was negative otherwise and Brain MRI showed delayed non-specific myelination abnormalities. She continues to have significant delays but does not have regression, seizures or other neurological complications. She has required a multidisciplinary approach for the management of her multiple contractures.Conclusion: This case confirms ZC4H2 as a cause of syndromic DRS and extends the ZC4H2 phenotype to include Marcus Gunn jaw winking.
Rossin EJ, Sobrin L, Kim LA. Single-cell RNA sequencing: An overview for the ophthalmologist. Semin Ophthalmol 2021;36(4):191-197.Abstract
Understanding the molecular composition of pathogenic tissues is a critical step in understanding the pathophysiology of disease and designing therapeutics. First described in 2009, single cell RNA sequencing (scRNAseq) is a methodology whereby thousands of cells are simultaneously isolated into individual micro-environments that can be altered experimentally and the genome-wide RNA expression of each cell is captured. It has undergone significant technological improvement over the last decade and gained tremendous popularity. scRNAseq is an improvement over prior pooled RNA analyses which cannot identify the cellular composition and heterogeneity of a tissue of interest. This new approach offers new opportunity for new discovery, as tissue samples can now be sub-categorized into groups of cell types based on genome-wide gene expression in an unbiased fashion. As ophthalmologists, we are uniquely positioned to obtain pathologic samples from the eye for further study. ScRNAseq has already been applied in ophthalmology to characterize retinal tissue, and it may offer the key to understanding various pathological processes in the future.
Imamura M, Takahashi A, Matsunami M, Horikoshi M, Iwata M, Araki S-I, Toyoda M, Susarla G, Ahn J, Park KH, Kong J, Moon S, Sobrin L, and (iDRAGON) IDRGCON, Yamauchi T, Tobe K, Maegawa H, Kadowaki T, Maeda S. Genome-wide association studies identify two novel loci conferring susceptibility to diabetic retinopathy in Japanese patients with type 2 diabetes. Hum Mol Genet 2021;30(8):716-726.Abstract
Several reports have suggested that genetic susceptibility contributes to the development and progression of diabetic retinopathy. We aimed to identify genetic loci that confer susceptibility to diabetic retinopathy in Japanese patients with type 2 diabetes. We analysed 5 790 508 single nucleotide polymorphisms (SNPs) in 8880 Japanese patients with type 2 diabetes, 4839 retinopathy cases and 4041 controls, as well as 2217 independent Japanese patients with type 2 diabetes, 693 retinopathy cases and 1524 controls. The results of these two genome-wide association studies (GWAS) were combined with an inverse variance meta-analysis (Stage-1), followed by de novo genotyping for the candidate SNP loci (P < 1.0 × 10-4) in an independent case-control study (Stage-2, 2260 cases and 723 controls). After combining the association data (Stages 1 and 2) using meta-analysis, the associations of two loci reached a genome-wide significance level: rs12630354 near STT3B on chromosome 3, P = 1.62 × 10-9, odds ratio (OR) = 1.17, 95% confidence interval (CI) 1.11-1.23, and rs140508424 within PALM2 on chromosome 9, P = 4.19 × 10-8, OR = 1.61, 95% CI 1.36-1.91. However, the association of these two loci was not replicated in Korean, European or African American populations. Gene-based analysis using Stage-1 GWAS data identified a gene-level association of EHD3 with susceptibility to diabetic retinopathy (P = 2.17 × 10-6). In conclusion, we identified two novel SNP loci, STT3B and PALM2, and a novel gene, EHD3, that confers susceptibility to diabetic retinopathy; however, further replication studies are required to validate these associations.
Peng C, Wang Y, Ji L, Kuang L, Yu Z, Li H, Zhang J, Zhao J. LncRNA-MALAT1/miRNA-204-5p/Smad4 Axis Regulates Epithelial-Mesenchymal Transition, Proliferation and Migration of Lens Epithelial Cells. Curr Eye Res 2021;46(8):1137-1147.Abstract
MATERIALS AND METHODS: LECs were cultured and induced with TGF-β2 (10 ng/mL). SiRNA against MALAT1 (Si-MALAT1) was transfected into LECs to knockdown the expression of MALAT1. To overexpress or knockdown miR-204-5p, miR-204-5p mimics (miR-204-5p mimics) and anti-miR-204-5p (miR-204-5p inhibitor) were transfected into LECs. We used RNA FISH to identify the location of MALAT1. RNA levels of MALAT1 and miR-204-5p were analyzed by RT-qPCR. Additionally, target protein levels of Smad4, epithelial differentiation and mesenchymal markers were analyzed with Western blot. We employed EdU Labeling to measured cell proliferation and performed Transwell Assay to analyze the cell migration. Dual-luciferase reporter assays in LECs were conducted to verify whether miRNA-204-5p was negatively regulated by MALAT1 and Smad4 was a direct target of miR-204-5p. RESULTS: The expression of MALAT1 was upregulated in PCO specimens. MALAT1 was overexpressed in TGF-β2 induced LECs, and the knockdown of MALAT1 could attenuate TGF-β2 induced EMT. Besides, the upregulation of MALAT1 was correlated with the downregulation of miR-204-5p and upregulation of Smad4. Importantly, MALAT1 was revealed to be located in the cytoplasm of LECs. Furthermore, luciferase reporter assays confirmed that MALAT1 could negatively regulate the expression of miR-204-5p and then regulate its direct target Smad4. Finally, the knockdown of MALAT1 could inhibit the EMT, proliferation, and migration of LECs; however, those can be reversed by anti-miR-204-5p. CONCLUSIONS: Our findings reveal that MALAT1 may regulate EMT, proliferation, and migration of LECs as a ceRNA by "sponging" miR-204-5p and targeting Smad4, and serve as a promising therapeutic target in preventing PCO.
Cogné B, Latypova X, Senaratne LDS, Martin L, Koboldt DC, Kellaris G, Fievet L, Le Meur G, Caldari D, Debray D, Nizon M, Frengen E, Bowne SJ, Consortium L99, Cadena EL, Daiger SP, Bujakowska KM, Pierce EA, Gorin M, Katsanis N, Bézieau S, Petersen-Jones SM, Occelli LM, Lyons LA, Legeai-Mallet L, Sullivan LS, Davis EE, Isidor B. Mutations in the Kinesin-2 Motor KIF3B Cause an Autosomal-Dominant Ciliopathy. Am J Hum Genet 2020;106(6):893-904.Abstract
Kinesin-2 enables ciliary assembly and maintenance as an anterograde intraflagellar transport (IFT) motor. Molecular motor activity is driven by a heterotrimeric complex comprised of KIF3A and KIF3B or KIF3C plus one non-motor subunit, KIFAP3. Using exome sequencing, we identified heterozygous KIF3B variants in two unrelated families with hallmark ciliopathy phenotypes. In the first family, the proband presents with hepatic fibrosis, retinitis pigmentosa, and postaxial polydactyly; he harbors a de novo c.748G>C (p.Glu250Gln) variant affecting the kinesin motor domain encoded by KIF3B. The second family is a six-generation pedigree affected predominantly by retinitis pigmentosa. Affected individuals carry a heterozygous c.1568T>C (p.Leu523Pro) KIF3B variant segregating in an autosomal-dominant pattern. We observed a significant increase in primary cilia length in vitro in the context of either of the two mutations while variant KIF3B proteins retained stability indistinguishable from wild type. Furthermore, we tested the effects of KIF3B mutant mRNA expression in the developing zebrafish retina. In the presence of either missense variant, rhodopsin was sequestered to the photoreceptor rod inner segment layer with a concomitant increase in photoreceptor cilia length. Notably, impaired rhodopsin trafficking is also characteristic of recessive KIF3B models as exemplified by an early-onset, autosomal-recessive, progressive retinal degeneration in Bengal cats; we identified a c.1000G>A (p.Ala334Thr) KIF3B variant by genome-wide association study and whole-genome sequencing. Together, our genetic, cell-based, and in vivo modeling data delineate an autosomal-dominant syndromic retinal ciliopathy in humans and suggest that multiple KIF3B pathomechanisms can impair kinesin-driven ciliary transport in the photoreceptor.
Hysi PG, Choquet H, Khawaja AP, Wojciechowski R, Tedja MS, Yin J, Simcoe MJ, Patasova K, Mahroo OA, Thai KK, Cumberland PM, Melles RB, Verhoeven VJM, Vitart V, Segre A, Stone RA, Wareham N, Hewitt AW, Mackey DA, Klaver CCW, Macgregor S, for and Myopia CRE, Khaw PT, Foster PJ, and Consortium UKEV, Guggenheim JA, Guggenheim JA, Rahi JS, Jorgenson E, Hammond CJ. Meta-analysis of 542,934 subjects of European ancestry identifies new genes and mechanisms predisposing to refractive error and myopia. Nat Genet 2020;52(4):401-407.Abstract
Refractive errors, in particular myopia, are a leading cause of morbidity and disability worldwide. Genetic investigation can improve understanding of the molecular mechanisms that underlie abnormal eye development and impaired vision. We conducted a meta-analysis of genome-wide association studies (GWAS) that involved 542,934 European participants and identified 336 novel genetic loci associated with refractive error. Collectively, all associated genetic variants explain 18.4% of heritability and improve the accuracy of myopia prediction (area under the curve (AUC) = 0.75). Our results suggest that refractive error is genetically heterogeneous, driven by genes that participate in the development of every anatomical component of the eye. In addition, our analyses suggest that genetic factors controlling circadian rhythm and pigmentation are also involved in the development of myopia and refractive error. These results may enable the prediction of refractive error and the development of personalized myopia prevention strategies in the future.
Almeida LM, Lebreton F, Gaca A, Bispo PM, Saavedra JT, Calumby RN, Grillo LM, Nascimento TG, Filsner PH, Moreno AM, Gilmore MS. Transferable Resistance Gene in Enterococcus faecalis from Swine in Brazil. Antimicrob Agents Chemother 2020;64(6)Abstract
OptrA is an ATP-binding cassette (ABC)-F protein that confers resistance to oxazolidinones and phenicols and can be either plasmid-encoded or chromosomally encoded. Here, we isolated 13 strains possessing a linezolid MIC of ≥4 mg/liter from nursery pigs in swine herds located across Brazil. Genome sequence comparison showed that these strains possess in different genetic contexts occurring in 5 different sequence type backgrounds. The gene invariably occurred in association with an regulator and a gene encoding a hypothetical protein. In some contexts, this genetic island was able to excise and form a covalently closed circle within the cell; this circle appeared to occur in high abundance and to be transmissible by coresident plasmids.
Bronstein R, Capowski EE, Mehrotra S, Jansen AD, Navarro-Gomez D, Maher M, Place E, Sangermano R, Bujakowska KM, Gamm DM, Pierce EA. A combined RNA-seq and whole genome sequencing approach for identification of non-coding pathogenic variants in single families. Hum Mol Genet 2020;29(6):967-979.Abstract
Inherited retinal degenerations (IRDs) are at the focus of current genetic therapeutic advancements. For a genetic treatment such as gene therapy to be successful, an accurate genetic diagnostic is required. Genetic diagnostics relies on the assessment of the probability that a given DNA variant is pathogenic. Non-coding variants present a unique challenge for such assessments as compared to coding variants. For one, non-coding variants are present at much higher number in the genome than coding variants. In addition, our understanding of the rules that govern the non-coding regions of the genome is less complete than our understanding of the coding regions. Methods that allow for both the identification of candidate non-coding pathogenic variants and their functional validation may help overcome these caveats allowing for a greater number of patients to benefit from advancements in genetic therapeutics. We present here an unbiased approach combining whole genome sequencing (WGS) with patient-induced pluripotent stem cell (iPSC)-derived retinal organoids (ROs) transcriptome analysis. With this approach, we identified and functionally validated a novel pathogenic non-coding variant in a small family with a previously unresolved genetic diagnosis.