Neuro-ophthalmology publications

Molinaro A, Micheletti S, Rossi A, Gitti F, Galli J, Merabet LB, Fazzi EM. Autistic-Like Features in Visually Impaired Children: A Review of Literature and Directions for Future Research. Brain Sci 2020;10(8)Abstract
There remains great interest in understanding the relationship between visual impairment (VI) and autism spectrum disorder (ASD) due to the extraordinarily high prevalence of ASD in blind and visually impaired children. The broad variability across individuals and assessment methodologies have made it difficult to understand whether autistic-like symptoms shown by some children with VI might reflect the influence of the visual deficit, or represent a primary neurodevelopmental condition that occurs independently of the VI itself. In the absence of a valid methodology adapted for the visually impaired population, diagnosis of ASD in children with VI is often based on non-objective clinical impression, with inconclusive prevalence data. In this review, we discuss the current state of knowledge and suggest directions for future research.
Xiao W, Kreiman G. XDream: Finding preferred stimuli for visual neurons using generative networks and gradient-free optimization. PLoS Comput Biol 2020;16(6):e1007973.Abstract
A longstanding question in sensory neuroscience is what types of stimuli drive neurons to fire. The characterization of effective stimuli has traditionally been based on a combination of intuition, insights from previous studies, and luck. A new method termed XDream (EXtending DeepDream with real-time evolution for activation maximization) combined a generative neural network and a genetic algorithm in a closed loop to create strong stimuli for neurons in the macaque visual cortex. Here we extensively and systematically evaluate the performance of XDream. We use ConvNet units as in silico models of neurons, enabling experiments that would be prohibitive with biological neurons. We evaluated how the method compares to brute-force search, and how well the method generalizes to different neurons and processing stages. We also explored design and parameter choices. XDream can efficiently find preferred features for visual units without any prior knowledge about them. XDream extrapolates to different layers, architectures, and developmental regimes, performing better than brute-force search, and often better than exhaustive sampling of >1 million images. Furthermore, XDream is robust to choices of multiple image generators, optimization algorithms, and hyperparameters, suggesting that its performance is locally near-optimal. Lastly, we found no significant advantage to problem-specific parameter tuning. These results establish expectations and provide practical recommendations for using XDream to investigate neural coding in biological preparations. Overall, XDream is an efficient, general, and robust algorithm for uncovering neuronal tuning preferences using a vast and diverse stimulus space. XDream is implemented in Python, released under the MIT License, and works on Linux, Windows, and MacOS.
Schoemaker D, Zuluaga Y, Viswanathan A, Shrimer M, Torrico-Teave H, Velilla L, Ospina C, Ospina GG, Lopera F, Arboleda-Velasquez JF, Quiroz YT. The INECO Frontal Screening for the Evaluation of Executive Dysfunction in Cerebral Small Vessel Disease: Evidence from Quantitative MRI in a CADASIL Cohort from Colombia. J Int Neuropsychol Soc 2020;:1-13.Abstract
OBJECTIVES: Executive dysfunction is a predominant cognitive symptom in cerebral small vessel disease (SVD). The Institute of Cognitive Neurology Frontal Screening (IFS) is a well-validated screening tool allowing the rapid assessment of multiple components of executive function in Spanish-speaking individuals. In this study, we examined performance on the IFS in subjects with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), an inherited condition leading to the early onset of SVD. We further explored associations between performance on the IFS and magnetic resonance imaging (MRI) markers of SVD. METHODS: We recruited 24 asymptomatic CADASIL subjects and 23 noncarriers from Colombia. All subjects underwent a research MRI and a neuropsychological evaluation, including the IFS. Structural MRI markers of SVD were quantified in each subject, together with an SVD Sum Score representing the overall burden of cerebrovascular alterations. General linear model, correlation, and receiver operating characteristic curve analyses were used to explore group differences on the IFS and relationships with MRI markers of SVD. RESULTS: CADASIL subjects had a significantly reduced performance on the IFS Total Score. Performance on the IFS correlated with all quantified markers of SVD, except for brain atrophy and perivascular spaces enlargement. Finally, while the IFS Total Score was not able to accurately discriminate between carriers and noncarriers, it showed adequate sensitivity and specificity in detecting the presence of multiple MRI markers of SVD. CONCLUSIONS: These results suggest that the IFS may be a useful screening tool to assess executive function and disease severity in the context of SVD.
Chwalisz BK, Douglas VP, Douglas KA, Martinez-Lage M, Kelly HR, Cestari DM. Episodic Visual Distortions and Stroke-Like Symptoms in a 56-Year-Old Man With Intravascular Lymphoma. J Neuroophthalmol 2020;40(2):265-270.Abstract
A healthy 56-year-old man presented with vision changes and left upper extremity motor and sensory changes. MRI of the brain without contrast was significant for multifocal areas of restricted diffusion in multiple vascular territories. Neuro-Ophthalmic evaluation revealed an inferonasal visual field defect in the left eye, thickened choroid on optical coherence tomography, and bilateral delayed arteriovenous and choroidal filling on fluorescein angiogram. Repeat MRI demonstrated interval enlargement of many of the same foci of abnormal diffusion-weighted imaging signal. Computed tomography of the abdomen and pelvis revealed 3 distinct lobulated retroperitoneal masses that were biopsied and found to be consistent with diffuse large B-cell lymphoma. Brain biopsy specimens showed intravascular lymphocytes, confirming a diagnosis of intravascular lymphoma (IVL). In this diagnostically challenging case, a link was established between the presence of multiple strokes (some of which showed slow evolution over time) and retinochoroidal hypoperfusion, which provided a critical clue to the ultimate diagnosis of IVL.
Chen JJ, Flanagan EP, Bhatti TM, Jitprapaikulsan J, Dubey D, Lopez Chiriboga ASS, Fryer JP, Weinshenker BG, McKeon A, Tillema J-M, Lennon VA, Lucchinetti CF, Kunchok A, McClelland CM, Lee MS, Bennett JL, Pelak VS, Van Stavern G, Adesina O-OO, Eggenberger ER, Acierno MD, Wingerchuk DM, Lam BL, Moss H, Beres S, Gilbert AL, Shah V, Armstrong G, Heidary G, Cestari DM, Stiebel-Kalish H, Pittock SJ. Steroid-sparing maintenance immunotherapy for MOG-IgG associated disorder. Neurology 2020;95(2):e111-e120.Abstract
OBJECTIVE: Myelin oligodendrocyte glycoprotein-immunoglobulin G (MOG-IgG) associated disorder (MOGAD) often manifests with recurrent CNS demyelinating attacks. The optimal treatment for reducing relapses is unknown. To help determine the efficacy of long-term immunotherapy in preventing relapse in patients with MOGAD, we conducted a multicenter retrospective study to determine the rate of relapses on various treatments. METHODS: We determined the frequency of relapses in patients receiving various forms of long-term immunotherapy for MOGAD. Inclusion criteria were history of ≥1 CNS demyelinating attacks, MOG-IgG seropositivity, and immunotherapy for ≥6 months. Patients were reviewed for CNS demyelinating attacks before and during long-term immunotherapy. RESULTS: Seventy patients were included. The median age at initial CNS demyelinating attack was 29 years (range 3-61 years; 33% <18 years), and 59% were female. The median annualized relapse rate (ARR) before treatment was 1.6. On maintenance immunotherapy, the proportion of patients with relapse was as follows: mycophenolate mofetil 74% (14 of 19; ARR 0.67), rituximab 61% (22 of 36; ARR 0.59), azathioprine 59% (13 of 22; ARR 0.2), and IV immunoglobulin (IVIG) 20% (2 of 10; ARR 0). The overall median ARR on these 4 treatments was 0.3. All 9 patients treated with multiple sclerosis (MS) disease-modifying agents had a breakthrough relapse on treatment (ARR 1.5). CONCLUSION: This large retrospective multicenter study of patients with MOGAD suggests that maintenance immunotherapy reduces recurrent CNS demyelinating attacks, with the lowest ARR being associated with maintenance IVIG therapy. Traditional MS disease-modifying agents appear to be ineffective. Prospective randomized controlled studies are required to validate these conclusions.
Caton MT, Zamani AA, Du R, Prasad S. Optic Neuropathy Due to Compression by an Ectatic Internal Carotid Artery Within the Orbital Apex. J Neuroophthalmol 2020;Abstract
Neurovascular compression is a rare but potentially treatable cause of optic neuropathy. Although incidental contact of the cisternal optic nerve and internal carotid artery (ICA) is common, compressive optic neuropathy occurring within the orbital apex has not been comprehensively described. We report a case of intra-orbital and intracanalicular optic nerve compression due to an ectatic ICA in a patient with congenital absence of the contralateral ICA. This report describes the complementary roles of advanced neuroimaging and neuro-ophthalmologic examination in rendering the diagnosis.
Xiao S, Gaier ED, Mazow ML, Stout AU, Travers DA, Angjeli E, Wu HC, Binenbaum G, Hunter DG. Improved adherence and treatment outcomes with an engaging, personalized digital therapeutic in amblyopia. Sci Rep 2020;10(1):8328.Abstract
Given the prevalence of poor adherence to therapy and the biases of self-reporting across healthcare, we hypothesized that an engaging, personalized therapy may improve adherence and treatment outcomes in the home. We tested this hypothesis in the initial indication of amblyopia, a neurodevelopmental disorder for which available treatments are limited by low adherence. We designed a novel digital therapeutic that modifies patient-selected cinematic content in real-time into therapeutic visual input, while objectively monitoring adherence. The therapeutic design integrated a custom-designed headset that delivers precise visual input to each eye, computational algorithms that apply real-time therapeutic modifications to source content, a cloud-based content management system that enables treatment in the home, and a broad library of licensed content. In a proof-of-concept human study on the therapeutic, we found that amblyopic eye vision improved significantly after 12 weeks of treatment, with higher adherence than that of available treatments. These initial results support the utility of personalized therapy in amblyopia and may have broader relevance for improving treatment outcomes in additional indications.
Chauhan MZ, Arcuri J, Park KK, Zafar MK, Fatmi R, Hackam AS, Yin Y, Benowitz L, Goldberg JL, Samarah M, Bhattacharya SK. Multi-Omic Analyses of Growth Cones at Different Developmental Stages Provides Insight into Pathways in Adult Neuroregeneration. iScience 2020;23(2):100836.Abstract
Growth cones (GCs) are structures associated with growing neurons. GC membrane expansion, which necessitates protein-lipid interactions, is critical to axonal elongation in development and in adult neuritogenesis. We present a multi-omic analysis that integrates proteomics and lipidomics data for the identification of GC pathways, cell phenotypes, and lipid-protein interactions, with an analytic platform to facilitate the visualization of these data. We combine lipidomic data from GC and adult axonal regeneration following optic nerve crush. Our results reveal significant molecular variability in GCs across developmental ages that aligns with the upregulation and downregulation of lipid metabolic processes and correlates with distinct changes in the lipid composition of GC plasmalemma. We find that these processes also define the transition into a growth-permissive state in the adult central nervous system. The insight derived from these analyses will aid in promoting adult regeneration and functional innervation in devastating neurodegenerative diseases.
Kang J, Cho SS, Kim HY, Lee BH, Cho HJ, Gwak YS. Regional Hyperexcitability and Chronic Neuropathic Pain Following Spinal Cord Injury. Cell Mol Neurobiol 2020;40(6):861-878.Abstract
Spinal cord injury (SCI) causes maladaptive changes to nociceptive synaptic circuits within the injured spinal cord. Changes also occur at remote regions including the brain stem, limbic system, cortex, and dorsal root ganglia. These maladaptive nociceptive synaptic circuits frequently cause neuronal hyperexcitability in the entire nervous system and enhance nociceptive transmission, resulting in chronic central neuropathic pain following SCI. The underlying mechanism of chronic neuropathic pain depends on the neuroanatomical structures and electrochemical communication between pre- and postsynaptic neuronal membranes, and propagation of synaptic transmission in the ascending pain pathways. In the nervous system, neurons are the only cell type that transmits nociceptive signals from peripheral receptors to supraspinal systems due to their neuroanatomical and electrophysiological properties. However, the entire range of nociceptive signaling is not mediated by any single neuron. Current literature describes regional studies of electrophysiological or neurochemical mechanisms for enhanced nociceptive transmission post-SCI, but few studies report the electrophysiological, neurochemical, and neuroanatomical changes across the entire nervous system following a regional SCI. We, along with others, have continuously described the enhanced nociceptive transmission in the spinal dorsal horn, brain stem, thalamus, and cortex in SCI-induced chronic central neuropathic pain condition, respectively. Thus, this review summarizes the current understanding of SCI-induced neuronal hyperexcitability and maladaptive nociceptive transmission in the entire nervous system that contributes to chronic central neuropathic pain.
Rossin EJ, Gilbert AL, Koen N, Leslie-Mazwi TM, Cunnane ME, Rizzo JF. Site of Origin of the Ophthalmic Artery Influences the Risk for Retinal Versus Cerebral Embolic Events. J Neuroophthalmol 2020;Abstract
BACKGROUND: Embolic events leading to retinal ischemia or cerebral ischemia share common risk factors; however, it has been well documented that the rate of concurrent cerebral infarction is higher in patients with a history of transient ischemic attack (TIA) than in those with monocular vision loss (MVL) due to retinal ischemia. Despite the fact that emboli to the ophthalmic artery (OA) and middle cerebral artery share the internal carotid artery (ICA) as a common origin or transit for emboli, the asymmetry in their final destination has not been fully explained. We hypothesize that the anatomic location of the OA takeoff from the ICA may contribute to the differential flow of small emboli to the retinal circulation vs the cerebral circulation. METHODS: We report a retrospective, comparative, case-control study on 28 patients with retinal ischemia and 26 patients with TIA or cerebral infarction caused by embolic events. All subjects underwent either computed tomography angiography or MRA. The location of the ipsilateral OA origin off the ICA was then graded in a blinded fashion and compared between cohorts. Vascular risk factors were collected for all patients, including age, sex, hypertension, hyperlipidemia, arrhythmia, diabetes, coronary artery disease, and smoking. RESULTS: We find that in patients with retinal ischemia of embolic etiology, the ipsilateral OA takeoff from the ICA is more proximal than in patients with cerebral infarcts or TIA (P = 0.0002). We found no statistically significant differences in demographic, vascular, or systemic risk factors. CONCLUSIONS: We find that the mean anatomical location of the OA takeoff from the ICA is significantly more proximal in patients with MVL due to retinal ischemia compared with patients with TIA or cerebral ischemia. This finding contributes significantly to our understanding of a long observed but poorly understood phenomenon that patients with MVL are less likely to have concurrent cerebral ischemia than are patients with TIA.
Chen CT, Schultz JA, Haven SE, Wilhite B, Liu C-H, Chen J, Hibbeln JR. Loss of RAR-related orphan receptor alpha (RORα) selectively lowers docosahexaenoic acid in developing cerebellum. Prostaglandins Leukot Essent Fatty Acids 2020;152:102036.Abstract
Deficiency in retinoid acid receptor-related orphan receptor alpha (RORα) of staggerer mice results in extensive granule and Purkinje cell loss in the cerebellum as well as in learned motor deficits, cognition impairments and perseverative tendencies that are commonly observed in autistic spectrum disorder (ASD). The effects of RORα on brain lipid metabolism associated with cerebellar atrophy remain unexplored. The aim of this study is to examine the effects of RORα deficiency on brain phospholipid fatty acid concentrations and compositions. Staggerer mice (Rora) and wildtype littermates (Rora) were fed n-3 polyunsaturated fatty acids (PUFA) containing diets ad libitum. At 2 months and 7 or more months old, brain total phospholipid fatty acids were quantified by gas chromatography-flame ionization detection. In the cerebellum, all fatty acid concentrations were reduced in 2 months old mice. Since total fatty acid concentrations were significantly different at 2-month-old, we examined changes in fatty acid composition. The composition of ARA was not significantly different between genotypes; though DHA composition remained significantly lowered. Despite cerebellar atrophy at >7-months-old, cerebellar fatty acid concentrations had recovered comparably to wildtype control. Therefore, RORα may be necessary for fatty acid accretions during neurodevelopment. Specifically, the effects of RORα on PUFA metabolisms are region-specific and age-dependent.
Douglas VP, Douglas KA, Rizzo JF, Chwalisz BK. Case report: Orbital myositis triggering oxygen-responsive cluster headache. Cephalalgia 2020;40(3):313-316.Abstract
BACKGROUND: Orbital myositis is an idiopathic, non-infectious condition, typically seen in young females and usually affecting one extraocular muscle. Orbital myositis mimicking cluster headache is a rare clinical entity, and this is the first description of a case of a secondary trigeminal autonomic cephalalgia from orbital myositis responsive to high-flow oxygen. CASE: A young woman presented with new-onset, oxygen-responsive headache, periorbital pain and autonomic features. She had associated vertical diplopia on downgaze and subtle ocular misalignment. An initial diagnosis of cluster headache was made. Initial brain MRI was unrevealing, but dedicated MRI of the orbits showed enhancement of orbital muscles. The diplopia and the imaging findings were consistent with orbital myositis. CONCLUSION: Orbital myositis mimicking cluster headache is rare, and not previously reported as an oxygen-responsive headache.
Rizzo JF. Unraveling the Enigma of Nonarteritic Anterior Ischemic Optic Neuropathy. J Neuroophthalmol 2019;39(4):529-544.Abstract
Non-arteritic anterior ischemic optic neuropathy (NAON) is the second most common optic neuropathy in adults. Despite extensive study, the etiology of NAION is not definitively known. The best evidence suggests that NAION is caused by an infarction in the region of the optic nerve head (ONH), which is perfused by paraoptic short posterior ciliary arteries (sPCAs) and their branches. To examine the gaps in knowledge that defies our understanding of NAION, a historical review was performed both of anatomical investigations of the ONH and its relevant blood vessels and the evolution of clinical understanding of NAION. Notably, almost all of the in vitro vascular research was performed prior our current understanding of NAION, which has largely precluded a hypothesis-based laboratory approach to study the etiological conundrum of NAION. More recent investigative techniques, like fluorescein angiography, have provided valuable insight into vascular physiology, but such light-based techniques have not been able to image blood vessels located within or behind the dense connective tissue of the sclera and laminar cribrosa, sites that are likely culpable in NAION. The lingering gaps in knowledge clarify investigative paths that might be taken to uncover the pathogenesis of NAION and possibly glaucoma, the most common optic neuropathy for which evidence of a vascular pathology also exists.
Bakaeva T, Mallery R, Prasad S. Emerging Treatments for Leber's Hereditary Optic Neuropathy and Other Genetic Causes of Visual Loss. Semin Neurol 2019;39(6):732-738.Abstract
Leber's hereditary optic neuropathy (LHON) and other genetic causes of visual loss are important clinical entities that can cause profound visual loss. To date, therapeutic options have been quite limited, but insights into the genetic basis of these diseases and advances in the ability to deliver effective and safe gene therapy have opened the door for new therapeutics that may revolutionize the approach to treating these conditions. This article reviews emerging gene therapies of LHON and other inherited ophthalmological diseases, addressing the technical, clinical, and ethical challenges that researchers and clinicians will encounter as new treatments become available for these conditions.