Neuro-ophthalmology

Neuro-ophthalmology publications

An D, Fujiki R, Iannitelli DE, Smerdon JW, Maity S, Rose MF, Gelber A, Wanaselja EK, Yagudayeva I, Lee JY, Vogel C, Wichterle H, Engle EC, Mazzoni EO. Stem cell-derived cranial and spinal motor neurons reveal proteostatic differences between ALS resistant and sensitive motor neurons. Elife 2019;8Abstract
In amyotrophic lateral sclerosis (ALS) spinal motor neurons (SpMN) progressively degenerate while a subset of cranial motor neurons (CrMN) are spared until late stages of the disease. Using a rapid and efficient protocol to differentiate mouse embryonic stem cells (ESC) to SpMNs and CrMNs, we now report that ESC-derived CrMNs accumulate less human (h)SOD1 and insoluble p62 than SpMNs over time. ESC-derived CrMNs have higher proteasome activity to degrade misfolded proteins and are intrinsically more resistant to chemically-induced proteostatic stress than SpMNs. Chemical and genetic activation of the proteasome rescues SpMN sensitivity to proteostatic stress. In agreement, the hSOD1 G93A mouse model reveals that ALS-resistant CrMNs accumulate less insoluble hSOD1 and p62-containing inclusions than SpMNs. Primary-derived ALS-resistant CrMNs are also more resistant than SpMNs to proteostatic stress. Thus, an ESC-based platform has identified a superior capacity to maintain a healthy proteome as a possible mechanism to resist ALS-induced neurodegeneration.
Gise R, Gaier ED, Heidary G. Diagnosis and Imaging of Optic Nerve Head Drusen. Semin Ophthalmol 2019;:1-8.Abstract
The presence of optic nerve swelling in pediatric patients is a frequent cause for referral to pediatric ophthalmologists and neuro-ophthalmologists because this finding can be the harbinger of serious neurologic disease including brain tumor, demyelinating disease, infiltrative disease of the optic nerve, or idiopathic intracranial hypertension. Optic nerve head drusen (ONHD) are common and can be particularly difficult to distinguish from true optic nerve swelling in pediatric patients because the ONHD are typically buried beneath the substance of the optic nerve. Correct identification of ONHD is relevant because of the visual morbidity associated with this condition and because of the need to distinguish pseudopapilledema secondary to ONHD from true optic nerve swelling. A variety of imaging modalities may be employed to evaluate for the presence of ONHD, including ultrasound, optical coherence tomography (OCT), enhanced depth imaging-OCT, fluorescein angiography, fundus autofluorescence, and optical coherence tomography angiography. To date, there is no consensus as to which of these techniques is most accurate and which should be part of a standardized evaluation for children suspected of ONHD. This review examines the recent literature analyzing these diagnostic tools and summarizes data regarding best practices for identifying ONHD.
Mathys H, Davila-Velderrain J, Peng Z, Gao F, Mohammadi S, Young JZ, Menon M, He L, Abdurrob F, Jiang X, Martorell AJ, Ransohoff RM, Hafler BP, Bennett DA, Kellis M, Tsai L-H. Single-cell transcriptomic analysis of Alzheimer's disease. Nature 2019;570(7761):332-337.Abstract
Alzheimer's disease is a pervasive neurodegenerative disorder, the molecular complexity of which remains poorly understood. Here, we analysed 80,660 single-nucleus transcriptomes from the prefrontal cortex of 48 individuals with varying degrees of Alzheimer's disease pathology. Across six major brain cell types, we identified transcriptionally distinct subpopulations, including those associated with pathology and characterized by regulators of myelination, inflammation, and neuron survival. The strongest disease-associated changes appeared early in pathological progression and were highly cell-type specific, whereas genes upregulated at late stages were common across cell types and primarily involved in the global stress response. Notably, we found that female cells were overrepresented in disease-associated subpopulations, and that transcriptional responses were substantially different between sexes in several cell types, including oligodendrocytes. Overall, myelination-related processes were recurrently perturbed in multiple cell types, suggesting that myelination has a key role in Alzheimer's disease pathophysiology. Our single-cell transcriptomic resource provides a blueprint for interrogating the molecular and cellular basis of Alzheimer's disease.
Ponce CR, Xiao W, Schade PF, Hartmann TS, Kreiman G, Livingstone MS. Evolving Images for Visual Neurons Using a Deep Generative Network Reveals Coding Principles and Neuronal Preferences. Cell 2019;177(4):999-1009.e10.Abstract
What specific features should visual neurons encode, given the infinity of real-world images and the limited number of neurons available to represent them? We investigated neuronal selectivity in monkey inferotemporal cortex via the vast hypothesis space of a generative deep neural network, avoiding assumptions about features or semantic categories. A genetic algorithm searched this space for stimuli that maximized neuronal firing. This led to the evolution of rich synthetic images of objects with complex combinations of shapes, colors, and textures, sometimes resembling animals or familiar people, other times revealing novel patterns that did not map to any clear semantic category. These results expand our conception of the dictionary of features encoded in the cortex, and the approach can potentially reveal the internal representations of any system whose input can be captured by a generative model.
Burstein R, Noseda R, Fulton AB. Neurobiology of Photophobia. J Neuroophthalmol 2019;39(1):94-102.Abstract
BACKGROUND: Photophobia is commonly associated with migraine, meningitis, concussion, and a variety of ocular diseases. Advances in our ability to trace multiple brain pathways through which light information is processed have paved the way to a better understanding of the neurobiology of photophobia and the complexity of the symptoms triggered by light. PURPOSE: The purpose of this review is to summarize recent anatomical and physiological studies on the neurobiology of photophobia with emphasis on migraine. RECENT FINDINGS: Observations made in blind and seeing migraine patients, and in a variety of animal models, have led to the discovery of a novel retino-thalamo-cortical pathway that carries photic signal from melanopsinergic and nonmelanopsinergic retinal ganglion cells (RGCs) to thalamic neurons. Activity of these neurons is driven by migraine and their axonal projections convey signals about headache and light to multiple cortical areas involved in the generation of common migraine symptoms. Novel projections of RGCs into previously unidentified hypothalamic neurons that regulate parasympathetic and sympathetic functions have also been discovered. Finally, recent work has led to a novel understanding of color preference in migraine-type photophobia and of the roles played by the retina, thalamus, and cortex. SUMMARY: The findings provide a neural substrate for understanding the complexity of aversion to light in patients with migraine and neuro-ophthalmologic other disorders.
Ing EB, Wang DN, Kirubarajan A, Benard-Seguin E, Ma J, Farmer JP, Belliveau MJ, Sholohov G, Torun N. Systematic Review of the Yield of Temporal Artery Biopsy for Suspected Giant Cell Arteritis. Neuroophthalmology 2019;43(1):18-25.Abstract
PURPOSE: To determine the positive yield (utility rate) of temporal artery biopsy (TAB) in patients with suspected giant cell arteritis (GCA). STUDY DESIGN: Systematic review (CRD42017078508) and meta-regression. MATERIALS AND METHODS: All articles concerning TAB for suspected GCA with English language abstracts from 1998 to 2017 were retrieved. Articles were excluded if they exclusively reported positive TAB, or only cases of known GCA. Where available, the pre-specified predictors of age, sex, vision symptoms, jaw claudication, duration of steroid treatment prior to TAB, specimen length, bilateral TAB, and use of ultrasound/MRI (imaging) were recorded for meta-regression. RESULTS: One hundred and thirteen articles met eligibility criteria. The was 92%, and with such high heterogeneity, meta-analysis is unsuitable. The median yield of TAB was 0.25 (95% confidence interval 0.21 to 0.27), with interquartile range 0.17 to 0.34. On univariate meta-regression age (coefficient 0.012,  = 0.025) was the only statistically significant patient factor associated with TAB yield. CONCLUSIONS: Systematic review revealed high heterogeneity in the yield of TAB. The median utility rate of 25% and its interquartile range provides a benchmark for decisions regarding the under/overutilization of TAB and aids in the evaluation of non-invasive alternatives for the investigation of GCA.
Zhao B, Torun N, Elsayed M, Cheng A-D, Brook A, Chang Y-M, Bhadelia RA. Diagnostic Utility of Optic Nerve Measurements with MRI in Patients with Optic Nerve Atrophy. AJNR Am J Neuroradiol 2019;40(3):558-561.Abstract
BACKGROUND AND PURPOSE: No MR imaging measurement criteria are available for the diagnosis of optic nerve atrophy. We determined a threshold optic nerve area on MR imaging that predicts a clinical diagnosis of optic nerve atrophy and assessed the relationship between optic nerve area and retinal nerve fiber layer thickness measured by optical coherence tomography, an ancillary test used to evaluate optic nerve disorders. MATERIALS AND METHODS: We evaluated 26 patients with suspected optic nerve atrophy (8 with unilateral, 13 with bilateral and 5 with suspected but not demonstrable optic nerve atrophy) who had both orbital MR imaging and optical coherence tomography examinations. Forty-five patients without optic nerve atrophy served as controls. Coronal inversion recovery images were used to measure optic nerve area on MR imaging. Retinal nerve fiber layer thickness was determined by optical coherence tomography. Individual eyes were treated separately; however, bootstrapping was used to account for clustering when appropriate. Correlation coefficients were used to evaluate relationships; receiver operating characteristic curves, to investigate predictive accuracy. RESULTS: There was a significant difference in optic nerve area between patients' affected eyes with optic nerve atrophy (mean, 3.09 ± 1.09 mm), patients' unaffected eyes (mean, 5.27 ± 1.39 mm; = .008), and control eyes (mean, 6.27 ± 2.64 mm; < .001). Optic nerve area ≤ 4.0 mm had a sensitivity of 0.85 and a specificity of 0.83 in predicting the diagnosis of optic nerve atrophy. A significant relationship was found between optic nerve area and retinal nerve fiber layer thickness ( = 0.68, < .001). CONCLUSIONS: MR imaging-measured optic nerve area ≤ 4.0 mm has moderately high sensitivity and specificity for predicting optic nerve atrophy, making it a potential diagnostic tool for radiologists.
Schoemaker D, Quiroz YT, Torrico-Teave H, Arboleda-Velasquez JF. Clinical and research applications of magnetic resonance imaging in the study of CADASIL. Neurosci Lett 2019;698:173-179.Abstract
Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is an inherited small vessel disease that leads to early cerebrovascular events and functional disability. It is the most common single-gene disorder leading to stroke. Magnetic resonance imaging (MRI) is a central component of the diagnosis and monitoring of CADASIL. Here we provide a descriptive review of the literature on three important aspects pertaining to the use of MRI in CADASIL. First, we review past research exploring MRI markers for this disease. Secondly, we describe results from studies investigating associations between neuroimaging abnormalities and neuropathology in CADASIL. Finally, we discuss previous findings relating MRI markers to clinical symptoms. This review thus provides a summary of the current state of knowledge regarding the use of MRI in CADASIL as well as suggestions for future research.
Reshef ER, Schiff ND, Brown EN. A Neurologic Examination for Anesthesiologists: Assessing Arousal Level during Induction, Maintenance, and Emergence. Anesthesiology 2019;130(3):462-471.Abstract
Anesthetics have profound effects on the brain and central nervous system. Vital signs, along with the electroencephalogram and electroencephalogram-based indices, are commonly used to assess the brain states of patients receiving general anesthesia and sedation. Important information about the patient's arousal state during general anesthesia can also be obtained through use of the neurologic examination. This article reviews the main components of the neurologic examination focusing primarily on the brainstem examination. It details the components of the brainstem examination that are most relevant for patient management during induction, maintenance, and emergence from general anesthesia. The examination is easy to apply and provides important complementary information about the patient's arousal level that cannot be discerned from vital signs and electroencephalogram measures.
Chi Z-L, Adini A, Birsner AE, Bazinet L, Akula JD, D'Amato RJ. PR1P ameliorates neurodegeneration through activation of VEGF signaling pathway and remodeling of the extracellular environment. Neuropharmacology 2019;148:96-106.Abstract
Neurodegenerative diseases affect millions of people worldwide. Optic neuropathies are the most commonly occurring neurodegenerative diseases, characterized by progressive retinal ganglion cell (RGC) degeneration. We recently reported that Prominin-1, a protein found on the surface of stem cells, interacts with VEGF and enhances its activity. VEGF is known to have various protective roles in the nervous system. Subsequently, we have developed a 12-mer peptide derived from Prominin-1, named PR1P, and investigated its effects on neuronal survival of damaged RGCs in a rat model of optic nerve crush (ONC). PR1P prevented RGC apoptosis resulting in improvement of retinal function in the rat ONC model. PR1P treatment significantly increased phosphorylation of ERK and AKT and expression its downstream proteins c-fos and Egr-1 in the retina. Additionally, PR1P beneficially increased the MMP-9/TIMP-1 ratio and promoted glial activation in the retina of ONC rats. Thus, PR1P displayed neuroprotective effects through enhanced VEGF-driven neuronal survival and reconstruction of the extracellular environment in ONC model. Our data indicate that PR1P may be a promising new clinical candidate for the treatment of neurodegenerative diseases.

Pages