Imaging and Diagnostics

Imaging and Diagnostics Publications

Singh RB, Perepelkina T, Testi I, Young BK, Mirza T, Invernizzi A, Biswas J, Agarwal A. Imaging-based Assessment of Choriocapillaris: A Comprehensive Review. Semin Ophthalmol 2022;:1-22.Abstract
PURPOSE: Over the past two decades, advancements in imaging modalities have significantly evolved the diagnosis and management of retinal diseases. Through these novel platforms, we have developed a deeper understanding of the anatomy of the choroidal vasculature and the choriocapillaris. The recently developed tools such as optical coherence tomography (OCT) and OCT angiography (OCTA) have helped elucidate the pathological mechanisms of several posterior segment diseases. In this review, we have explained the anatomy of the choriocapillaris and its close relationship to the outer retina and retinal pigment epithelium. METHODS: A comprehensive search of medical literature was performed through the Medline/PubMed database using search terms: choriocapillaris, choroid, quantification, biomarkers, diabetic retinopathy, age-related macular degeneration, choroidal blood flow, mean blur rate, flow deficit, optical coherence tomography, optical coherence tomography angiography, fluorescein angiography, indocyanine green angiography, OCTA, Doppler imaging, uveitis, choroiditis, white dot syndrome, tubercular serpiginous-like choroiditis, choroidal granuloma, pachychoroid, toxoplasmosis, central serous chorioretinopathy, multifocal choroiditis, choroidal neovascularization, choroidal thickness, choroidal vascularity index, choroidal vascular density, and choroidal blood supply. The search terms were used either independently or combined with choriocapillaris/choroid. RESULTS: The imaging techniques which are used to qualitatively and quantitatively analyze choriocapillaris are described. The pathological alterations in the choriocapillaris in an array of conditions such as diabetes mellitus, age-related macular degeneration, pachychoroid spectrum of diseases, and inflammatory disorders have been comprehensively reviewed. The future directions in the study of choriocapillaris have also been discussed. CONCLUSION: The development of imaging tools such as OCT and OCTA has dramatically improved the assessment of choriocapillaris in health and disease. The choriocapillaris can be delineated from the stromal choroid using the OCT and quantified by manual or automated methods. However, these techniques have inherent limitations due to the lack of an anatomical distinction between the choriocapillaris and the stromal choroid, which can be overcome with the use of predefined segmentation slabs on OCT and OCTA. These segmentation slabs help in standardizing the choriocapillaris imaging and obtain repeatable measurements in various conditions such as diabetic retinopathy, age-related macular degeneration, pachychoroid spectrum, and ocular inflammations. Additionally, Doppler imaging has also been effectively used to evaluate the choroidal blood flow and quantifying the choriocapillaris and establishing its role in the pathogenesis of various retinochoroidal diseases. As tremendous technological advancements such as wide-field and ultra-wide field imaging take place, there will be a significant improvement in the ease and accuracy of quantifying the choriocapillaris.
Garg I, Uwakwe C, Le R, Lu ES, Cui Y, Wai KM, Katz R, Zhu Y, Moon JY, Li CY, Laíns I, Eliott D, Elze T, Kim LA, Wu DM, Miller JW, Husain D, Vavvas DG, Miller JB. Nonperfusion Area and Other Vascular Metrics by Wider Field Swept-Source OCT Angiography as Biomarkers of Diabetic Retinopathy Severity. Ophthalmol Sci 2022;2(2)Abstract
Purpose: To study the wider field swept-source optical coherence tomography angiography (WF SS-OCTA) metrics, especially non-perfusion area (NPA), in the diagnosing and staging of DR. Design: Cross-sectional observational study (November 2018-September 2020). Participants: 473 eyes of 286 patients (69 eyes of 49 control patients and 404 eyes of 237 diabetic patients). Methods: We imaged using 6mm×6mm and 12mm×12mm angiograms on WF SS-OCTA. Images were analyzed using the ARI Network and FIJI ImageJ. Mixed effects multiple regression models and receiver operator characteristic analysis was used for statistical analyses. Main Outcome Measures: Quantitative metrics such as vessel density (VD); vessel skeletonized density (VSD); foveal avascular zone (FAZ) area, circularity, and perimeter; and NPA in DR and their relative performance for its diagnosis and grading. Results: Among patients with diabetes (median age 59 years), 51 eyes had no DR, 185 eyes (88 mild, 97 moderate-severe) had non-proliferative DR (NPDR); and 168 eyes had proliferative DR (PDR). Trend analysis revealed a progressive decline in superficial capillary plexus (SCP) VD and VSD, and increased NPA with increasing DR severity. Additionally, there was a significant reduction in deep capillary plexus (DCP) VD and VSD in early DR (mild NPDR), but the progressive reduction in advanced DR stages was not significant. NPA was the best parameter to diagnose DR (AUC:0.96), whereas all parameters combined on both angiograms efficiently diagnosed (AUC:0.97) and differentiated between DR stages (AUC range:0.83-0.97). The presence of diabetic macular edema was associated with reduced SCP and DCP VD and VSD within mild NPDR eyes, whereas an increased VD and VSD in SCP among moderate-severe NPDR group. Conclusions: Our work highlights the importance of NPA, which can be more readily and easily measured with WF SS-OCTA compared to fluorescein angiography. It is additionally quick and non-invasive, and hence can be an important adjunct for DR diagnosis and management. In our study, a combination of all OCTA metrics on both 6mm×6mm and 12mm×12mm angiograms had the best diagnostic accuracy for DR and its severity. Further longitudinal studies are needed to assess NPA as a biomarker for progression or regression of DR severity.
Zeng R, Garg I, Bannai D, Kasetty M, Katz R, Park J, Lizano P, Miller JB. Retinal microvasculature and vasoreactivity changes in hypertension using optical coherence tomography-angiography. Graefes Arch Clin Exp Ophthalmol 2022;Abstract
PURPOSE: To evaluate the retinal vasculature and vasoreactivity of patients with hypertension (HTN) using spectral domain optical coherence tomography angiography (SD-OCTA). METHODS: Patients with and without a diagnosis of HTN were included in this cross-sectional observational study. All eyes were imaged with SD-OCTA using 3 mm × 3 mm and 6 mm × 6 mm centered on both the fovea and optic disk. A second 6 mm × 6 mm scan was taken after a 30 s breath-hold. Vessel density (VD), vessel skeletonized density (VSD), and fractal dimension (FD) were calculated using customized MATLAB scripts. Vessel diameter index (VDI) was obtained by taking the ratio of VD to VSD. Vasoreactivity was measured by subtracting the VD or VSD before and after breath-hold (∆VD, ∆VSD). RESULTS: Twenty-three eyes with HTN (17 patients) and 17 control eyes (15 patients) were included. In the 6 mm × 6 mm angiogram centered on fovea, the superficial capillary plexus (SCP) VD (ß =  - 0.029, p = 0.012), VSD (ß =  - 0.004, p = 0.043) and the choriocapillaris VD (ß =  - 0.021, p = 0.030) were significantly decreased in HTN compared to control eyes. Similarly, FD was decreased in both the SCP (ß =  - 0.012, p = 0.013) and choriocapillaris (ß =  - 0.009, p = 0.030). In the 3 mm × 3 mm angiogram centered on optic disk, SCP VDI (ß =  - 0.364, p = 0.034) was decreased. ∆VD and ∆VSD were both reduced in the DCP (ß =  - 0.034, p = 0.032; ß =  - 0.013, p = 0.043) and ∆VSD was elevated in the choriocapillaris of HTN eyes (ß = 0.004, p = 0.032). CONCLUSIONS: The study used SD-OCTA to show significant differences in the retinal vasculature of hypertensive patients. It was also the first to demonstrate the potential of OCT-A to investigate retinal vascular reactivity in patients with HTN.
Salongcay RP, Aquino LAC, Salva CMG, Saunar AV, Alog GP, Sun JK, Peto T, Silva PS. Comparison of Handheld Retinal Imaging with ETDRS 7-Standard Field Photography for Diabetic Retinopathy and Diabetic Macular Edema. Ophthalmol Retina 2022;6(7):548-556.Abstract
PURPOSE: To compare nonmydriatic (NM) and mydriatic (MD) handheld retinal imaging with standard ETDRS 7-field color fundus photography (ETDRS photographs) for the assessment of diabetic retinopathy (DR) and diabetic macular edema (DME). DESIGN: Prospective, comparative, instrument validation study. SUBJECTS: A total of 225 eyes from 116 patients with diabetes mellitus. METHODS: Following a standardized protocol, NM and MD images were acquired using handheld retinal cameras (NM images: Aurora, Smartscope, and RetinaVue-700; MD images: Aurora, Smartscope, RetinaVue-700, and iNview) and dilated ETDRS photographs. Grading was performed at a centralized reading center using the International Clinical Classification for DR and DME. Kappa statistics (simple [K], weighted [Kw]) assessed the level of agreement for DR and DME. Sensitivity and specificity were calculated for any DR, referable DR (refDR), and vision-threatening DR (vtDR). MAIN OUTCOME MEASURES: Agreement for DR and DME; sensitivity and specificity for any DR, refDR, and vtDR; ungradable rates. RESULTS: Severity by ETDRS photographs: no DR, 33.3%; mild nonproliferative DR, 20.4%; moderate DR, 14.2%; severe DR, 11.6%; proliferative DR, 20.4%; no DME, 68.0%; DME, 9.3%; non-center involving clinically significant DME, 4.9%; center-involving clinically significant DME, 12.4%; and ungradable, 5.3%. For NM handheld retinal imaging, Kw was 0.70 to 0.73 for DR and 0.76 to 0.83 for DME. For MD handheld retinal imaging, Kw was 0.68 to 0.75 for DR and 0.77 to 0.91 for DME. Thresholds for sensitivity (0.80) and specificity (0.95) were met by NM images acquired using Smartscope and MD images acquired using Aurora and RetinaVue-700 cameras for any DR and by MD images acquired using Aurora and RetinaVue-700 cameras for refDR. Thresholds for sensitivity and specificity were met by MD images acquired using Aurora and RetinaVue-700 for DME. Nonmydriatic and MD ungradable rates for DR were 15.1% to 38.3% and 0% to 33.8%, respectively. CONCLUSIONS: Following standardized protocols, NM and MD handheld retinal imaging devices have substantial agreement levels for DR and DME. With mydriasis, not all handheld retinal imaging devices meet standards for sensitivity and specificity in identifying any DR and refDR. None of the handheld devices met the established 95% specificity for vtDR, suggesting that lower referral thresholds should be used if handheld devices must be utilized. When using handheld devices, the ungradable rate is significantly reduced with mydriasis and DME sensitivity thresholds are only achieved following dilation.
Naninck T, Kahlaoui N, Lemaitre J, Maisonnasse P, De Mori A, Pascal Q, Contreras V, Marlin R, Relouzat F, Delache B, Hérate C, Aldon Y, van Gils M, Zabaleta N, Tsong Fang RH, Bosquet N, Sanders RW, Vandenberghe LH, Chapon C, Le Grand R. Computed tomography and [18F]-FDG PET imaging provide additional readouts for COVID-19 pathogenesis and therapies evaluation in non-human primates. iScience 2022;25(4):104101.Abstract
Non-human primates (NHPs) are particularly relevant as preclinical models for SARS-CoV-2 infection and nuclear imaging may represent a valuable tool for monitoring infection in this species. We investigated the benefit of computed X-ray tomography (CT) and [18F]-FDG positron emission tomography (PET) to monitor the early phase of the disease in a large cohort (n = 76) of SARS-CoV-2 infected macaques. Following infection, animals showed mild COVID-19 symptoms including typical lung lesions. CT scores at the acute phase reflect the heterogeneity of lung burden following infection. Moreover, [18F]-FDG PET revealed that FDG uptake was significantly higher in the lungs, nasal cavities, lung-draining lymph nodes, and spleen of NHPs by 5 days postinfection compared to pre-infection levels, indicating early local inflammation. The comparison of CT and PET data from previous COVID-19 treatments or vaccines we tested in NHP, to this large cohort of untreated animals demonstrated the value of in vivo imaging in preclinical trials.
Zekavat SM, Sekimitsu S, Ye Y, Raghu V, Zhao H, Elze T, Segrè AV, Wiggs JL, Natarajan P, Del Priore L, Zebardast N, Wang JC. Photoreceptor Layer Thinning Is an Early Biomarker for Age-Related Macular Degeneration: Epidemiologic and Genetic Evidence from UK Biobank OCT Data. Ophthalmology 2022;129(6):694-707.Abstract
PURPOSE: Despite widespread use of OCT, an early-stage imaging biomarker for age-related macular degeneration (AMD) has not been identified. Pathophysiologically, the timing of drusen accumulation in relationship to photoreceptor degeneration in AMD remains unclear, as are the inherited genetic variants contributing to these processes. Herein, we jointly analyzed OCT, electronic health record data, and genomic data to characterize the time sequence of changes in retinal layer thicknesses in AMD, as well as epidemiologic and genetic associations between retinal layer thicknesses and AMD. DESIGN: Cohort study. PARTICIPANTS: Forty-four thousand eight hundred twenty-three individuals from the UK Biobank (enrollment age range, 40-70 years; 54% women; median follow-up, 10 years). METHODS: The Topcon Advanced Boundary Segmentation algorithm was used for retinal layer segmentation. We associated 9 retinal layer thicknesses with prevalent AMD (present at enrollment) in a logistic regression model and with incident AMD (diagnosed after enrollment) in a Cox proportional hazards model. Next, we associated AMD-associated genetic alleles, individually and as a polygenic risk score (PRS), with retinal layer thicknesses. All analyses were adjusted for age, age-squared (age2), sex, smoking status, and principal components of ancestry. MAIN OUTCOME MEASURES: Prevalent and incident AMD. RESULTS: Photoreceptor segment (PS) thinning was observed throughout the lifespan of individuals analyzed, whereas retinal pigment epithelium (RPE) and Bruch's membrane (BM) complex thickening started after 57 years of age. Each standard deviation (SD) of PS thinning and RPE-BM complex thickening was associated with incident AMD (PS: hazard ratio [HR], 1.35; 95% confidence interval [CI], 1.23-1.47; P = 3.7 × 10-11; RPE-BM complex: HR, 1.14; 95% CI, 1.06-1.22; P = 0.00024). The AMD PRS was associated with PS thinning (β, -0.21 SD per twofold genetically increased risk of AMD; 95% CI, -0.23 to -0.19; P = 2.8 × 10-74), and its association with RPE-BM complex was U-shaped (thinning with AMD PRS less than the 92nd percentile and thickening with AMD PRS more than the 92nd percentile). The loci with strongest support for genetic correlation were AMD risk-raising variants Complement Factor H (CFH):rs570618-T, CFH:rs10922109-C, and Age-Related Maculopathy Susceptibility 2 (ARMS2)/High-Temperature Requirement Serine Protease 1 (HTRA1):rs3750846-C on PS thinning and SYN3/Tissue Inhibitor of Metalloprotease 3 (TIMP3):rs5754227-T on RPE-BM complex thickening. CONCLUSIONS: Epidemiologically, PS thinning precedes RPE-BM complex thickening by decades and is the retinal layer most strongly predictive of future AMD risk. Genetically, AMD risk variants are associated with decreased PS thickness. Overall, these findings support PS thinning as an early-stage biomarker for future AMD development.
Guzman Aparicio MA, Chen TC. New views on three-dimensional imaging technologies for glaucoma: an overview. Curr Opin Ophthalmol 2022;33(2):103-111.Abstract
PURPOSE OF REVIEW: To summarize the literature on three-dimensional (3D) technological advances in ophthalmology, the quantitative methods associated with this, and their improved ability to help detect glaucoma disease progression. RECENT FINDINGS: Improvements in measuring glaucomatous structural changes are the result of dual innovations in optical coherence tomography (OCT) imaging technology and in associated quantitative software. SUMMARY: Compared with two-dimensional (2D) OCT parameters, newer 3D parameters provide more data and fewer artifacts.
Bannai D, Adhan I, Katz R, Kim LA, Keshavan M, Miller JB, Lizano P. Quantifying Retinal Microvascular Morphology in Schizophrenia Using Swept-Source Optical Coherence Tomography Angiography. Schizophr Bull 2022;48(1):80-89.Abstract
BACKGROUND: Retinovascular changes are reported on fundus imaging in schizophrenia (SZ). This is the first study to use swept-source optical coherence tomography angiography (OCT-A) to comprehensively examine retinal microvascular changes in SZ. METHODS: This study included 30 patients with SZ/schizoaffective disorder (8 early and 15 chronic) and 22 healthy controls (HCs). All assessments were performed at Beth Israel Deaconess Medical Center and Massachusetts Eye and Ear. All participants underwent swept-source OCT-A of right (oculus dextrus [OD]) and left (oculus sinister [OS]) eye, clinical, and cognitive assessments. Macular OCT-A images (6 × 6 mm) were collected with the DRI Topcon Triton for superficial, deep, and choriocapillaris vascular regions. Microvasculature was quantified using vessel density (VD), skeletonized vessel density (SVD), fractal dimension (FD), and vessel diameter index (VDI). RESULTS: Twenty-one HCs and 26 SZ subjects were included. Compared to HCs, SZ patients demonstrated higher overall OD superficial SVD, OD choriocapillaris VD, and OD choriocapillaris SVD, which were primarily observed in the central, central and outer superior, and central and outer inferior/superior, respectively. Early-course SZ subjects had significantly higher OD superficial VD, OD choriocapillaris SVD, and OD choriocapillaris FD compared to matched HCs. Higher bilateral (OU) superficial VD correlated with lower Positive and Negative Syndrome Scale (PANSS) positive scores, and higher OU deep VDI was associated with higher PANSS negative scores. CONCLUSIONS AND RELEVANCE: These results suggest the presence of microvascular dysfunction associated with early-stage SZ. Clinical associations with microvascular alterations further implicate this hypothesis, with higher measures being associated with worse symptom severity and functioning in early stages and with lower symptom severity and better functioning in later stages.
PURPOSE: To report an unusual case of early macular necrosis in acute retinal necrosis and its features on multimodal imaging. METHODS: Findings on fundus examination, laboratory workup, fluorescein angiography, autofluorescence, optical coherence tomography, and optical coherence tomography angiography. RESULTS: A 31-year-old healthy woman presented with 1 week of photophobia and central scotoma of the right eye. Initial examination revealed vitritis, hyperemia of the optic disc, and a yellow-white macular lesion without any peripheral findings. Peripheral involvement was first noted only 4 days later. The patient was diagnosed with acute retinal necrosis secondary to varicella zoster virus and was successfully treated with intravitreal and oral antiviral medications. Optical coherence tomography imaging of the macular lesion showed involvement of both the inner and outer retina. Optical coherence tomography angiography revealed a large flow void in the choriocapillaris, which has not been previously demonstrated. CONCLUSION: Multimodal imaging offers valuable information in the evaluation of patients with acute retinal necrosis.